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ABSTRACT Multiuser transmission with shared spectrum is investigated in the presence of energy
harvesting. For each user, the data generation, the harvested energy arrival, and the channel state variation
are, respectively, considered as stochastic processes. Each user aims tomaximize its own average throughput.
Accordingly, a stochastic game is formulated at first. Next, we analyze the stochastic game in infinite-
stage and finite-stage scenarios, respectively. On the basis of theoretical studies, an iterated distributive
algorithm with solving a linear problem in each iteration is designed for the infinite case. For the finite case,
two distributed algorithms named CVPBI and GoPGA are proposed. Finally, the effectiveness of the
proposed algorithms is demonstrated by simulations.

INDEX TERMS Energy harvesting, multiuser communication, spectrum sharing, stochastic game.

I. INTRODUCTION
Energy harvesting, which obtains energy from ambient
energy sources, has gained much attention because of its
‘‘green’’ nature. The energy harvesting aided wireless com-
munication becomes a hot research topic thereby. Generally,
these researches can be categorized into two kinds: single user
scenario and multiuser scenario. In [1], we have investigated
the delay optimal point-to-point transmission, where the data
generation, the harvested energy arrival, and the channel state
variation are considered. In [2], the cost minimization under
delay constraint is performed in multi-carrier single user
communications with energy harvesting. In [3], the authors
discuss resource allocation strategies of a single user wire-
less transmission system with hybrid harvesting energy and
conventional energy. The authors propose a mixed integer
programming problem for minimizing the total energy cost
under the energy harvesting constraints as well as an outage
constraint. In [4], the energy harvesting single user communi-
cation is studied. An asymptotically optimal power allocation
solution for optimizing a general utility function is obtained.

With respect to the energy harvesting aided multiuser
communication, the interference among users introduces
new challenges. In [5], we have studied the energy har-
vesting aided transmission in cognitive radio networks,
where a primary user shares spectrum with an energy har-
vesting aided secondary user. And two practical algorithms
for delay minimization are proposed. In [6], the authors

investigate the harvesting symmetric 2-user Gaussian
interference channel with energy cooperation. The
Han-Kobayashi region of the capacity is characterized. Fur-
thermore, the optimal policy of energy cooperation and power
allocation that gets the boundary points on the average rate
region is proposed. In [7], a general utility optimization
framework for energy-harvesting-based wireless communi-
cations is proposed, which encapsulates a series of design
problems, e.g., outage probability minimization, in single-
user and multiuser setups. In [8], energy reallocation in a
multi-user network with a shared harvesting module and
storage battery is investigated. In [9], the authors design
a joint energy and spectrum cooperation strategy between
two renewable powered cellular systems. In [10], multiuser
communication with energy harvesting transmitters is ana-
lyzed. The intermittence of the harvested energy is taken into
account, and the equilibrium’s existence and uniqueness of
the formulated game are derived. In [11], related works on the
energy harvesting wireless communications are summarized
and reviewed.

In this paper, we discuss the energy harvesting aided
multiuser communication in spectrum sharing networks.
Each user is composed of a transmitter and a receiver.
The transmitter is equipped with energy harvesting devices
such as solar panels. The harvested energy is stored in
a battery for possible usage. Meanwhile, the transmitter
can get energy from the power grid. Data are generated
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stochastically in the upper layer of the transmitter and cached
in a Fist-in-First-out (FIFO) data buffer. In each transmission,
some data are taken from the buffer and transmitted to the
receiver. The aim of each user is to maximize the average
throughput via scheduling the allocation of the harvested
energy and grid power under the grid power constraint.

Compared to previous works, we investigate a more
general and practical energy harvesting aided multiuser com-
munications system with sharing spectrum. Besides consid-
ering the harvesting energy arrival, the channel variation,
and the interplay among users, we take the data generation
into account. Furthermore, a unified analytical framework
utilizing stochastic game is proposed. Via analytical studies,
effective algorithms are designed. The contributions of the
paper can be outlined as follows.
• Considering the intermittence of the harvested energy,
the channel state variation, the randomness of data
arrival at each user and the interaction among users,
we formulate a stochastic game [12], [13].

• By exploring the formulated stochastic game in infinite-
stage case, an iterated algorithm that derives the Nash
equilibrium (NE) is given.

• By analyzing the formulated stochastic game in finite-
stage case, two algorithms referred to as CVPBI and
GoPGA are respectively proposed for the sufficient data
scenario and the general scenario.

The rest of paper is structured as follows. In Section II,
the system model is described, and a stochastic game is
formulated accordingly. In Section III, the stochastic game
is analyzed for infinite and finite time horizon scenarios,
and corresponding algorithms are designed thereafter. Next,
in Section IV, simulations are performed to verify the effec-
tiveness of proposed algorithms. Finally, Section V concludes
the whole paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
As illustrated in Fig. 1, consider a spectrum sharing scenario,
whereM users utilize the same spectrum band in an area. The
users are denoted as user 1,· · · , userM . Each user consists of
a transmitter (Tx) and a receiver (Rx). Each Tx is equipped
with energy harvesting devices (e.g., solar panels). The har-
vested energy is stored in a battery before usage. Meanwhile,
each Tx could get power from the grid. At each Tx, generated
data from the upper layer are stored in the data buffer as
an FIFO queue before transmission. Slotted time model is
adopted, and each slot is with length τ . In each slot, the Tx
chooses some data from the data queue to transmit to the Rx.
We consider block fading model of the wireless channel. That
is to say, the channel power gain remains constant in a slot and
changes among different slots. Gi,j[n] denotes the channel
power gain between user i’s Tx and user j’s Rx in the n-th slot.

Denote the allocated grid power and harvested power of
user i for data transmission in the n-th slot
as Vi[n] and Wi[n], respectively. The the total power for
transmission is

Pi[n] = Vi[n]+Wi[n].

FIGURE 1. Multiuser transmission in spectrum sharing scenario with
energy harvesting.

The transmitted data during the n-th slot for user i, denoted
by Ri[n], can be given by

Ri[n] = log
(
1+

Pi[n]Gi,i[n]
Ii[n]

)
, (1)

where

Ii[n] =
M∑

j 6=i,j=1

Pj[n]Gj,i[n]+ N0

denotes the received interference plus noise, and N0 is the
noise power spectral density at the receiver. Denote the stored
harvested energy in the user i’s battery at the beginning of
the n-th slot as Ei[n]. Ei[n] is the harvested energy during the
n-th slot at user i. Then

Ei[n+ 1] = Ei[n]−Wi[n]τ + Ei[n]. (2)

LetQi[n] be the data buffer length of user i at the beginning of
the n-th slot. Denote Ai[n] as the generated data from upper
layer of user i during the n-th slot. We have

Qi[n+ 1] = Qi[n]− Ri[n]+Ai[n]. (3)

Each user decides how much grid power as well as harvested
energy to be allocated for data transmission in each slot. And
the objective is tomaximize its own average throughout under
the average grid power consumption constraint during the
considered N slots. The set of users is

� =
{
1, · · · ,M

}
.
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At the n-th slot, denote the state of user i as

Xi[n] =
(
Qi[n],Ei[n], gi,j[n],Ai[n], Ei[n]

)
with state space Xi and the action of user i as

Si[n] =
(
Vi[n],Wi[n]

)
with action space Si, respectively. Let Si(x) be the set of all
possible actions of user i in the state x ∈ Xi. For the state
Xi[n], the action should comply with Wi[n] ≤ Ei[n] and
Ri[n] ≤ Qi[n]. If the state of user i at a slot is x ∈ Xi and
action s ∈ Si(x) is adopted, the next state (state in next slot)
will be z ∈ Xi with a probability Pixsz. The payoff to user i is
its average throughput, i.e.,

ui =
1
N

N∑
n=1

Ri[n]. (4)

Let X =
∏

i∈� Xi, S =
∏

i∈� Si. The multiuser transmis-
sion problem can be formulated as the following constrained
stochastic game G.

G =
{
�,X ,S, {Pixsz}i∈�, {ui}i∈�

}
(5)

with the average grid power constraint (V is the upper bound
for each user)

V̄i =
1
N

N∑
n=1

Vi[n] ≤ V, ∀i ∈ �.

III. PROBLEM ANALYSIS AND ALGORITHM DESIGN
In this section, the formulated stochastic game is studied
and corresponding algorithms are designed for the infinite
and finite time slots, respectively. For infinite time slots,
the formulated game can be solve through a linear program-
ming (LP) problem, and an iterated algorithm to derive the
NE solution is proposed thereafter. For the finite time slots,
the optimization problem of each user in the formulated
game can be analyzed by using the KKT conditions [17].
Furthermore, the sufficient data case and the general
case are investigated, and two algorithms are proposed,
respectively.

We first give the definition of the NE for the stochastic
game. Define a policy of user i as πi =

(
π1
i , · · · , π

N
i

)
where

πni generates an action si =
(
vi,wi

)
with a probability at the

n-th slot. The set of all possible policies of user i is denoted
as 5i. For all the M users, 5 =

∏M
i=15i is the set of the

multi-policy. The multi-policy excluding user i is expressed
as π−i =

(
π1, · · · , πi−1, πi+1, · · · , πM

)
∈ 5−i.

Definition 1: The multi-policy π∗ =
(
π∗1 , · · · , π

∗
M

)
is a

NE if ui(π∗) ≥ ui(πi, π∗−i) for all πi ∈ 5i and i ∈ �.

A. INFINITE TIME HORIZON AND FINITE STATE
When N → ∞ and the state is finite, user i solves
the following LP problem to obtain its optimal policy
(best response) given a multi-policy of other users, π−i.

Denote Ki = {(x, s) : x ∈ Xi, s ∈ Si(x)}, the LP problem
is to find z∗i = {z

∗
i (x, s) : (x, s) ∈ Ki} for

max
∑

(x,s)∈Ki

ui,π−i (x, s)z
∗
i (x, s) (6)

s.t.



∑
(x,s=(v,w))∈Ki

v ∗ z∗i (x, s) ≤ V, (7a)∑
(x,s)∈Ki

z∗i (x, s)
[
δr (x)− Pixsr

]
= 0,

∀r ∈ Xi, (7b)
z∗i (x, s) ≥ 0, ∀(x, s) ∈ Ki, (7c)∑

(x,s)∈Ki
z∗i (x, s) = 1. (7d)

where ui,π−i (x, s) is the utility when user i executes s in state x
and other users utilize multi-policy π−i,

δr (x) =

{
1, x = r,
0, x 6= r .

After obtaining z∗i , the policy that chooses action s for state x
with probability

P∗i (s, x) =
z∗i (x, s)∑

s′∈Si(x)
z∗i (x, s

′)
(8)

is optimal for user i.

Algorithm 1 Iterated Distributive Algorithm for Obtaining
NE Solution
Step 1: k = 0, initialize feasible policy for all M users

{πi(0)}i∈�.
Step 2: Update πi(k + 1) as the optimal policy (best

response) of user i by solving the LP problem (6)
given other users’ policies, π−i(k), for every i ∈ �.

Step 3: k = k + 1, go to Step 2 until convergence.

Then, we have an iterated algorithm (Algorithm 1) to get
the NE. The optimality of Algorithm 1 in the NE sense can
be stated in the following lemma.
Lemma 1: Algorithm 1 derives the NE of the stochastic

game for infinite time horizon and finitex state.
Proof: For given π−i ∈ 5−i, the optimal policy for

user i, π∗i , is given by

π∗i = arg max
πi∈5i

ui(πi, π−i)

s.t. V̄i ≤ V. (9)

According to the definition of NE i.e., Definition 1, the
NE solution of the stochastic game can be verified when
π∗i denotes the optimal policy in (9) for all user i providing
other users apply the policies π∗

−i. The problem (9) is for a
user i given other users’ policies. Then the stochastic game
shrinks to be a constrained stochastic optimization problem.
For the stochastic optimization problem (9), when the time
is infinite and the state is finite, it can be transformed to
the LP problem (6) [14], [15]. When deriving the optimal
solution z∗i , the probability of choosing action s for state x is
P∗i (x, s). That is to say, the policy that each user i ∈ � chooses
action s for state x with probability P∗i (x, s) is optimal.
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When we get the optimal policy for a user i given other users’
policy. The NE solution of all the users’s game can be derived
by the ‘‘best response’’ iteration algorithm, i.e., Algorithm 1.
On the details of the ‘‘best response’’ iteration algorithm,
please refer to our previous work [16].
Remark: In Algorithm 1, user i only needs its own informa-

tion (e.g., the state-action setKi, the state transition probabil-
ity Pixsr ), the upper bound of the grid power V , and measures
the aggregated received interference from other users Ii.
Thus, Algorithm 1 can be distributively applied.

B. FINITE TIME HORIZON
When the time slot is finite, the optimization problem for
user i can be expressed as

max{
Vi[n],Wi[n]

}N
n=1

1
N

N∑
n=1

Ri[n] (10)

s.t.


Wi[n] ≤

Ei[n]
τ
, ∀n (11a)

Ri[n] ≤ Qi[n], ∀n (11b)
1
N

∑N
n=1 Vi[n] ≤ V. (11c)

where (11a) is the harvested energy causality constraint, (11b)
is the instant rate constraint, and (11c) denotes the average
grid power constraint. The statesQi[n] andEi[n] are related to
actions

(
Vi[n],Wi[n]

)
according to (2) and (3), respectively.

To avoid the coupling, the constraints are re-expressed as

s.t.



l∑
n=1

Wi[n] ≤
l−1∑
n=0

Ei[n]
τ
, ∀l (12a)

l∑
n=1

Ri[n] ≤
l−1∑
n=0

Ai[n], ∀l (12b)

1
N

N∑
n=1

Vi[n] ≤ V, ∀n. (12c)

where Ei[0] andAi[0] are the initial battery energy and buffer
data of user i, respectively.

Using the KKT conditions, the optimal
(
Vi[k],Wi[k]

)
should satisfy

(
1−

N∑
j=k

ψj
) Gii[n]

Ii[k]+
(
Vi[k]+Wi[k]

)
Gii[n]

(
1
1

)
−

(
0∑N
j=k λj

)
−

(
ρ

0

)
= 0, ∀k (13a)

λl

( l∑
n=1

Wi[n]−
l−1∑
n=0

Ei[n]
τ

)
= 0, ∀l (13b)

ψl

( l∑
n=1

Ri[n]−
l−1∑
n=0

Ai[n]
)
= 0, ∀l (13c)

ρ
( 1
N

N∑
n=1

Vi[n]− V
)
= 0 (13d)

λl ≥ 0, ∀l (13e)
ψl ≥ 0, ∀l (13f)
ρ ≥ 0 (13g)

where λl , ψl , and ρ are generalized Lagrange
multipliers.

To derive the optimal solution of the general problem
(10) directly from the above equations is challenging if not
impossible.

In the following, we first discuss a tractable special sce-
nario where the data are sufficient in each slot. The special
case has practical meanings and can be viewed as a relaxed
version of (10). After that, we propose a feasible solution of
the general scenario.

1) SPECIAL SCENARIO - DATA ARE ENOUGH IN EACH SLOT
When the stored data in the data buffer are enough for each
slot transmission, i.e., the upper layer generates data with
high velocity, the instant rate constraint is inactive always.
Thereafter, we have the following optimization problem for
user i.

max{
Vi[n],Wi[n]

}N
n=1

1
N

N∑
n=1

Ri[n] (14)

s.t.

{∑l
n=1Wi[n] ≤

∑l−1
n=0

Ei[n]
τ
, ∀l (15a)

1
N

∑N
n=1 Vi[n] ≤ V. (15b)

In (14), the grid power allocation Vi[n] and the harvested
energy allocation Wi[n] are optimized simultaneously under
the average grid power and harvested energy causality con-
straints, respectively. According to the principle of ‘‘cyclic
variable method’’ in the optimization theory, (14) can be
decomposed into two subproblems.
Subproblem 1 (Grid Power Allocation With Average

Constraint): In subproblem 1 (i.e., (16)), the optimizing vari-
able is Vi[n] only, and the constraint is the corresponding
average grid power constraint.

max{
Vi[n]

}N
n=1

1
N

N∑
n=1

Ri[n]

s.t.
1
N

N∑
n=1

Vi[n] ≤ V. (16)

The solution of (16) is

V ∗i [n](Wi[n]) =
( 1
µi
−

Ii[n]
Gii[n]

−Wi[n]
)+

(17)

where

(·)+ = max{·, 0},

µi is a constant satisfying
N∑
n=1

V ∗i [n] ≤ V.

Remark: The solution V ∗i [n] is related to other users’
power allocation in the n-th slot (through Ii[n]) as well
as Wi[n].
Subproblem 2: Harvested energy allocation with causality

constraint
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In subproblem 2, i.e., (18), the optimization variable is
Wi[n] and the constraint is only the corresponding harvested
energy causality constraint.

max{
Wi[n]

}N
n=1

1
N

N∑
n=1

Ri[n]

s.t.
l∑

n=1

Wi[n] ≤
l−1∑
n=0

Ei[n]
τ
, ∀l. (18)

Let αn =
Gi,i[n]

Ii[n]+Vi[n]Gi,i[n] , βn =
1
N , γn =

1
αnβn

. The solution{
W ∗i [n]

}N
n=1 can be given by Algorithm 2 (where the lower

index i is omitted for brevity) [5].

Algorithm 2 HarAlloc(N , {V [n]}Nn=1)

Input: N , {E[n]}Nn=1, {αn}
N
n=1

Step 1: HarAlloc(1) = W ∗[1] = E[0].
Step 2:
for k = 2 : N
{W

′

[i]}k−1i=1 = HarAlloc(k − 1)
for r = k : −1 : 1
W =

∑k−1
i=r W

′

[i]+ E[k−1]
τ

Step 2-1: 1 = 0, WM = W ∗ = W , q = r ;
Step 2-2: 1 = 1+ βq, W ∗ = W ∗ − (γq+1 − γq)1,

q = q+ 1;
Step 2-3: if W ∗ > 0 and q ≤ k , WM = W ∗, repeat

Step 2-2;
else q∗ = q− 1, W [q∗] =

βq∗

1
WM .

end if

W ∗[q] =


[W [q∗]
βq∗

+ γq∗ − γq

]
βq, r ≤ q ≤ q∗

0, q∗ < q ≤ k.

if r > 1, qe = max
{
q
∣∣∣W ′ [q] > 0, 1 ≤ q ≤ r − 1

}
else qe = 1.
end if
if 1
αq∗βq∗

+
W ∗[q∗]
βq∗
≥

1
αqeβqe

+
W
′
[qe]
βqe

Alloc(k) =
{
W
′

[1], · · · ,W
′

[r − 1],W ∗[r], · · · ,

W ∗[k]
}
, break.

end if
end for
end for
Output: {W ∗[n]}Nn=1 = HarAlloc(N , {V [n]}Nn=1)

Remark: The solution W ∗i [n] is related to other users’
power allocation as well as Vi[n].
Based on the analysis and solutions of the two subproblems

(Subproblem 1 and Subproblem 2), we give an algorithm
(Algorithm 3) for problem (14) in the light of the basic
thinking of cyclic variable method.
Remark: Algorithm 3 produces a feasible solution of (14)

and gives a lower bound.

Algorithm 3 Iterated Algorithm for a User

Let V(k) =
{
V k [n])

}N
n=1 and W(k) =

{
W k [n])

}N
n=1

be the grid power allocation vector and harvested energy
allocation vector, respectively, in the k-th iteration.
Step 1: k = 0, initialize feasible policy for user i,(
V(0),W(0)

)
.

Step 2: Update{
V(k + 1) = V ∗(W(k))
W(k + 1) = HarAlloc(N ,V(k))

Step 3: k = k + 1, go to Step 2 until convergence.

In the above, we investigate the power allocation for a user
given other users’ power allocations. Based on the algorithm
for a user given other users’ strategies (Algorithm 3), we pro-
pose the Cyclic Variable Principle Based Iteration (CVPBI)
algorithm in Table 1 for the M -user under the enough data
scenario.
TABLE 1.

Remark: The CVPBI algorithm gives a feasible solution
for the sufficient data scenario. In addition, the CVPBI
algorithm requires all-slot (past, current and future) system
information (e.g., the energy arrival sequence, data arrival
sequence, and channel state sequence) as a priori, and it is an
off-line algorithm thereafter. In CVPBI, user i only needs its
own system state (e.g., the channel state Gi,i[n], harvested
energy arrival state Ei[n]), the grid power upper bound V ,
andmeasures the received aggregated interference from other
users Ii[n]. Then the CVPBI algorithm can be implemented
under distributive mode.

2) GREEDY ONE-STAGE GAME POWER ALLOCATION
FOR GENERAL SCENARIO
In this section, we propose an on-line algorithm, referred to
as Greedy one-stage Game Power Allocation (GoGPA), for
the general case. The GoGPA algorithm is a feasible solution
of the general problem and gives a lower bound thereafter.

In slot n, the M users run a one-stage game: the player
set contains the M users, the strategy of user i is Pi[n] with
constraint

Pi[n] ≤
Ei[n]
τ
+1i[n],

where 1i[n] is the available grid power at the beginning of
the n-th slot. And

1i[n+ 1] = 1i[n]− Vi[n] (19)
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with 1i[1] = N ∗ V . The utility of user i is its instant
rate

Ri[n] = min
{
log

(
1+

Pi[n]Gi,i[n]
Ii[n]

)
,Qi[n]

}
.

The best response of user i is

B
(
P−i[n]

)
= min

{Ei[n]
τ
+1i[n],

(
eQi[n] − 1

)
Ii[n]

Gi,i[n]

}
(20)

Algorithm 4 Iterated Algorithm for Obtaining the
One-Stage NE

Step 1: k = 0, initialize feasible power for all M users,
Pk
i , i = 1, · · · ,M

Step 2: Update Pk+1
i = B

(
Pk
−i

)
given Pk

−i for each i.
Step 3: k = k + 1, go to Step 2 until convergence.

given other users’ power allocations. The NE of this game
P∗i [n] can be given by Algorithm 4. When obtaining the
total transmission power, the grid power and harvested
energy allocations are given as follows: If P∗i [n] < Ei[n],
Wi[n] = P∗i [n] and Vi[n] = 0. Otherwise,Wi[n] = Ei[n] and
Vi[n] = P∗i [n] − Ei[n]. The GoGPA algorithm is outlined
in Table 2.

TABLE 2.

Remark: In the n-th iteration of the GoGPA algorithm,
only Qi[n], Ei[n], 1i[n], Gi,i[n], and Ii[n] (i ∈ �) are
needed. That is to say, the GoGPA algorithm demands the
current-slot system state only, thus it is an on-line algorithm.
In the GoGPA algorithm, user i requires only its own state
(i.e., Qi[n], Ei[n], Gi,i[n], and 1i[n]), the grid power upper
bound V , and gauges the received aggregated interference
from other users Ii[n]. Hence the GoGPA algorithm is a
distributive scheme.

IV. NUMERICAL RESULTS
In this section, simulations are carried out to demonstrate
the performance of proposed algorithms. In the simulations,
we consider 2 users and 3 slots, i.e., M = 2 and N = 3.
The noise power spectral density N0 = 0.1. The time slot
length τ = 1.

A. SUFFICIENT DATA SCENARIO
Fig. 2 demonstrates the convergence performance of the
CVPBI algorithm. The fading channel power gains are

FIGURE 2. Convergence of CVPBI algorithm.

G1,1 = [0.3964 0.3952 0.2009], G2,2 = [0.0357 0.1061
0.0429], G1,2 = [0.0686 0.0714 0.0131], and G2,1 =

[0.1041 0.0800 0.0037]. The average grid power bound
V = 250. The harvested energy arrival E1 = [50 100 80]
and E2 = [100 50 150]. From the figure, we can observe that
the CVPBI algorithm converges with high speed (converges
since the 8-th iteration).

FIGURE 3. The throughput v.s. V .

Fig. 3 plots the average throughput performance of user 1
and user 2 with respect to the average grid power bound V .
Meanwhile, we compare the CVPBI with an intuitive scheme
referred to as the greedy harvesting & uniform grid scheme,
where each user utilizes all the harvested energy in each
slot and the grid power is uniformly allocated among slots.
Formally, the greedy harvesting & uniform grid scheme can
be expressed as { Wi[n] = Ei[n] (21a)

Vi[n] =
V
N
. (21b)

The fading channel power gains are G1,1 = [0.1 0.25 0.2],
G2,2 = [0.28 0.3 0.5], G1,2 = [0.08 0.1 0.05], and
G2,1 = [0.05 0.08 0.11]. The harvested energy arrival
E1 = [50 100 80] and E2 = [100 50 150]. From the figure,
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we can see that the average throughput performance for both
users improves first when the average grid power bound
increases, and remains constant when V is larger than some
value. The reasons are as follows:When the grid power bound
on user 1 and user 2 increases, both user have more power
for data transmission, then the throughput increases at first
(for user 2, a decrease interval exists since the interference
from user 1. When the increasing speed of data transmission
power is less than the increasing speed of the interference
power, the throughput decreases.). Once the bound is larger
than a value, both user 1 and user 2 have enough power for
data transmission (When V is large enough, Vi[n] can be
large enough (and must be large enough so as to transmit as
much data as possible). Thus, Pi[n] = Vi[n]+Wi[n] is large

enough). Then, for user 1, R1[n] = log
(
1+ P1[n]G1,1[n]

P2[n]G2,1[n]+N0

)
approaches a constant log(1 + G1,1[n]

G2,1[n]
). Similarly, the rate

of user 2, R2[n] = log
(
1 + P2[n]G2,2[n]

P1[n]G1,2[n]+N0

)
approaches

log(1 + G2,2[n]
G1,2[n]

) with enough transmission power, which is
static. Furthermore, from the figure, we can found that the
CVPBI has better perfromance than the greedy harvesting &
uniform grid scheme. The effectiveness can be verified then.

FIGURE 4. The throughput v.s. scale of harvested energy arrival at both
user 1 and user 2.

Fig. 4 draws the throughput performance when the har-
vested energy arrival scales. The harvested energy arrival
E1 = [50 100 80] ∗ η and E2 = [100 50 150] ∗ η, where
η is referred to as the scaling coefficient. That is to say, the
harvested energy scales simultaneously for user 1 and user 2
with coefficient η. The channel power gains are the same as
those in Fig. 3. The average grid power boundV = 200. It can
be seen that with the increasing of the harvested energy at
both users, the average throughput of each user approaches
a constant. This is because when the harvested energy is
sufficient in each slot, each transmitter allocates power as
much as possible. User 1’s transmission power is interference
for user 2, and vice versa. That is to say, the transmitting
power and the interference increase at the same time. For
user 1, the increase speed of the interference is higher than
that of the transmitting power. Then the rate decrease at first.

FIGURE 5. The throughput v.s. scale of harvested energy arrival at user 1.

When the arrived harvested energy is large enough, the two
increasing speeds become almost the same. Then the through-
put remains static. For user 2, the explanations are similar.
In contrast, Fig. 5 gives the the throughput performance when
the harvested energy arrival scales only at user 1. In this
case, the transmitting power of user 1 increases, and the
interference for user 2 increases. Thus, the throughput of
user 1 increases and that of user 2 decreases.

FIGURE 6. The average throughput performance of GoPGA.

B. GENERAL SCENARIO
Fig. 6 illustrates the average throughput performance of
the GoPGA algorithm regarding the average grid power
bound, V . The channel gains are the same as those in Fig. 3.
The harvested energy arrival E1 = E2 = [50 100 80]. The
data arrival A1 = A2 = [3 8 7]. The initial buffer data is 5.
The initial battery energy is 50. From the figure, we can find
that the average throughput increases at first with the increase
of V , and remains almost constant when V is larger than
some value. It can be explained as follows: With the increase
of V , the power budget of users in each one stage game of
GoPGA increases. On one hand, the transmission power of
both users increases at the NE solution. On the other hand,
at one user, the interference from the other user increases
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at the same time. At first, the transmission power increases
faster than that of the interference for both user 1 and user 2,
and then the average throughput increases. When V is large
enough, the increase speed of the transmission power is
almost the same as that of the interference. Thus the average
throughput remains almost constant.

V. CONCLUSION
The energy harvesting aided multiuser communication uti-
lizing shared spectrum is studied in the paper. The average
throughput maximization problem is formulated as a stochas-
tic game when generated data, harvested energy, and channel
state vary randomly. Two practical algorithms, CVPBI and
GoPGA, are designed based on the theoretical analysis of
the game. Simulation results verify the effectiveness of the
proposed algorithms.
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