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A B S T R A C T

Background: Optimized abnormalities of individual brain network may allow earlier detection of mild cognitive
impairment (MCI) and accurate prediction of its conversion to Alzheimer’s disease (AD). Currently, most studies
constructed individual networks based on region-to-region correlation without employing multi-region in-
formation. In order to develop the potential discriminative power of network and provide supportive evidence
for feasibility of individual metabolic network study, we propose a new approach to extract features from
network with indirect relation based on 18F-FDG PET data.
New Method: Direct relation based individual network is first constructed using Gaussian kernel function. After
that, the lattice-close-degree in fuzzy mathematics is applied to reflect region-to-region indirect relation using
the direct relations of regions and their common neighbors. The proposed approach has been evaluated on 199
MCI subjects and 166 normal controls (NC) using SVM classifier.
Results: The indirect relation based network features significantly promote classification performance in se-
parating MCI from normal controls (NC) as well as MCI converters from non-converters. Specially, further im-
provements can be obtained by combining indirect relation features with ADAS-cog scores. Moreover, the dis-
criminative regions we found are consistent with previous studies, indicating the efficacy of our constructed
network in identifying correct biomarkers for diagnosing MCI and predicting its conversion.
Comparison with Existing Method(s): More accurate MCI identification of PET data can be achieved by features of
network with indirect relation.
Conclusions: This work provides a new way to investigate brain network from metabolic perspective for accurate
identification of MCI.

1. Introduction

Alzheimer’s disease (AD) is a progressive, irreversible neurodegen-
erative disease accompanied by structural and functional changes in the
brain (Dartigues, 2009; Mayeux and Stern, 2012; Prince et al., 2015).
As the most prevalent form of dementia, AD is characterized by the
decline of cognitive and memory functions, and it interferes people’s
daily life seriously (Reisberg et al., 1982; Smith et al., 1997;
Brookmeyer et al., 1998). Mild cognitive impairment (MCI), commonly

characterized by slight cognitive deficits but largely intact activities of
daily living is a transitional stage between the healthy aging and de-
mentia (Petersen, 2004). Individuals with MCI tend to progress to AD at
a rate of approximately 10–15% per year (Hänninen et al., 2000;
Grundman et al., 2004) while normal controls (NC) develop dementia
at a lower rate of 1–2% per year (Bischkopf et al., 2002). Thus, diagnose
MCI especially progress MCI as early as possible is of great clinical
importance to potentially delay and prevent transition from MCI to AD.

The human brain is a complicated network whose interregional

https://doi.org/10.1016/j.jneumeth.2018.09.007
Received 13 March 2018; Received in revised form 5 July 2018; Accepted 3 September 2018

⁎ Corresponding author at: School of Information Science and Engineering, Shandong Normal University, No. 1, University Road, Science Park, Jinan, Shandong,
250358, China.

1 Key Laboratory of Wearable Computing of Gansu Province, Lanzhou University,No. 222 Tianshui Road, Lanzhou, Gansu, 730000, China.
2 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the

investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

E-mail address: bh@lzu.edu.cn (B. Hu).

Journal of Neuroscience Methods 309 (2018) 188–198

Available online 05 September 2018
0165-0270/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01650270
https://www.elsevier.com/locate/jneumeth
https://doi.org/10.1016/j.jneumeth.2018.09.007
https://doi.org/10.1016/j.jneumeth.2018.09.007
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:bh@lzu.edu.cn
https://doi.org/10.1016/j.jneumeth.2018.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2018.09.007&domain=pdf


interactions enable the efficient processing of information and thus
support complex brain functions (Park and Friston, 2013). Plenty of
studies suggested that pathological attacks, including AD, bring sig-
nificant alterations to the anatomical and functional brain structures
(Wee et al., 2013). Specifically, AD-associated abnormalities involve
not only the functional connection of several specific encephalic regions
such as the hippocampus (Celone et al., 2006; Youssofzadeh et al.,
2017), cingulate (Frisoni et al., 2010; Hafkemeijer et al., 2015; Yu et al.,
2015), and precuneus (Langbaum et al., 2009; Camus et al., 2012;
Rathore et al., 2017), but also the functional integration of the entire
brain network (Stam et al., 2006; Illan et al., 2011). Therefore, the
network representation is beneficial for researchers to obtain exclusive
information reflecting an important aspect of the associations and in-
teractions between multiple regions, which is not evident in local
structure information. Thus far, many efforts have been made to con-
struct networks for the purpose of AD and MCI detection using data of
different neuroimaging techniques, such as structural magnetic re-
sonance imaging (MRI) (Prasad et al., 2015; Beheshti et al.,
2017),diffusion tensor imaging (DTI) (Wee et al., 2011; Shao et al.,
2012), functional MRI (fMRI) (Chen et al., 2011; Jie et al., 2014a,
2014b; Wang et al., 2015; Khazaee et al., 2016), positron emission to-
mography (PET) (Yao et al., 2015, 2017). Some researchers constructed
one network with a large population (He et al., 2007a, 2007b; Yao
et al., 2015; Liu et al., 2017). For instance, He et al. (2007a) constructed
network using Pearson correlation coefficient by cortical thickness and
revealed the robust small-world properties of the network. Liu et al.
(2017) extracted brain networks from AD and NC groups via in-
dependent component analysis (ICA) and constructed Cox models to
identify risk factors for MCI group using MRI and PET data. Although
these contribute to investigate the brain differences in group-level, they
limit the application on the investigation of individual variability,
particularly in identifying brain abnormalities in single patients. To
deal with this, studies such as (Raj et al., 2010; Wee et al., 2011; Zhou
et al., 2011; Dai et al., 2012; Li et al., 2012; Wee et al., 2013; Zheng
et al., 2015; Hee-Jong et al., 2016; Yao et al., 2017) established network
for each subject, namely individual network. Dai et al. (2012) and Wee
et al. (2013) have employed similar methods that construct individual
thickness network via region-to-region distances and exponential
function. Zheng et al. (2015) proposed a multi-distance combination to
evaluate between-region dissimilarity and transform the dissimilarity to
connectivity via inverse-proportional function. Yao et al. (2017) con-
structed the individual metabolic network using cubes which were
composed of certain numbers of voxels.

However, these studies of individual network construction compute
region-to-region correlation only using limited information of two re-
gions, ignore the fact that the relations of regions and their common
neighbors could reflect two regions’ correlation comprehensively,
which may provide more deep inherent information. In addition, PET is
a standardized non-invasive, three-dimensional functional imaging
modality measuring the brain’s rate of glucose metabolism (Nordberg
et al., 2010). In AD and MCI, characteristic brain regions show de-
creased glucose metabolism, specifically in temporoparietal association
cortices, posterior cingulate and precuneus, as well as frontal cortex and
whole brain in more severely affected patients (Herholz, 2003, 2010;
Illan et al., 2011; Chen et al., 2016). In view of the structural and
functional connections in the brain, the glucose metabolism rate of
different brain areas have some correlations, whose changes could re-
flect the dementia severity. In present study, we propose to construct
indirect relation based individual metabolic network using [18F]
Fluorodeoxyglucose PET (18F-FDG PET) data, which provides a new
family of features for accuracy identification of MCI. Firstly, we con-
struct direct relation based individual brain network. Euclidean dis-
tance is employed to reflect region-to-region dissimilarity, and then the
dissimilarity is transformed into correlation by exponential function.
Secondly, indirect relation based individual brain network is con-
structed. The relations of two regions and their common neighbors

compose of two fuzzy sets, respectively. The lattice-close-degree in
fuzzy mathematics is applied to reflect the correlation of the two fuzzy
sets, namely, the indirect relation of two regions. The performance of
the proposed network is evaluated by SVM classifier. Results show that
the indirect relation based network features can significantly improve
MCI detection performance when compare with direct relation features.
Furthermore, the indirect relation network is combined with cognitive
measures to gain further promotion. Finally, a weight-based statistics
method is utilized to find the most discriminative regions, whose results
are consistent with previous literatures. To our knowledge, there’s few
attention paid to the construction of indirect relation based individual
metabolic network, our method provides supportive evidence for the
effectiveness of metabolic network in MCI identification, and further
exploration is needed within such domain.

The remainder of the paper is structured as follows: Section 2 de-
scribes the material and methods in detail, which includes data acqui-
sition from ADNI database, construction of individual network, feature
reduction, and classification; and then the experimental results are
presented, followed by a discussion which summarizes our findings,
limitations and future directions.

2. Material and methods

2.1. Data acquisition

Data used in this study were obtained from the Alzheimer’s disease
Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/
ADNI/). Supported by public-private partnership, the ADNI was laun-
ched in 2003. It is an ongoing and comprehensive project whose goal is
to detect Alzheimer’s disease at the earliest stage possible and develop
ways to track the disease through biomarkers. The ADNI includes
biospecimens, genetic, neuroimaging and clinical data collected from
more than 50 research sites. Baseline FDG-PET data from 365 ADNI
participants were used in this study. These subjects include (i) NC
subjects, if diagnosis was normal at baseline; (ii) Stable MCI (sMCI)
subjects, if diagnosis was MCI at baseline and not converted to AD after
baseline within 36 months; (iii) Progressive MCI (pMCI) subjects, if
diagnosis was MCI at baseline but these subjects converted to AD after
baseline within 36 months. The demographic information and statistics
of clinical assessments of the subjects are illustrated in Table 1.

FDG-PET scans were acquired according to a standardized protocol.
Subjects to be imaged were asked to omit all food and fluids (except
water) for at least 4 h prior to the imaging session. In imaging center,
subjects lay quietly with eyes open in a room where the ambient noise is
minimal and the light is standardized. After being injected with
5 ± 0.5mCi (185MBq) of [18F]-FDG, subjects were allowed to rest
comfortably for 20min for the incorporation of [18F]-FDG into the
brain. Finally, a dynamic 3D scan consisting of six five-minute frames
was acquired. For the FDG-PET data, subsequent preprocessing steps
are as follows. Firstly, separate frames were co-registered to the first
extracted frame of the raw image file to lessen the effects of patient
motion. Secondly, average the co-registered frames to create a single
image. Thirdly, the co-registered and averaged images were reoriented
into a standard image grid, having 1.5mm cubic voxels. Finally, the
above-mentioned images were smoothed by a scanner-specific filter
function to produce images of a uniform isotropic resolution of 8mm

Table 1
Demographic and clinical information of the subjects.

Variables NC sMCI pMCI

No. of subjects(Male/Female) 166(83/83) 96(56/40) 103(60/43)
Age(mean ± SD) 74.36 ± 5.08 73.98 ± 7.30 73.71 ± 7.06
CDR 0 0.5 0.5
MMSE score(mean ± SD) 28.99 ± 1.21 27.72 ± 1.54 26.96 ± 1.67
ADAS-cog score(mean ± SD) 9.78 ± 4.20 14.12 ± 5.38 21.06 ± 5.54
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full-width-at-halfmaximum (FWHM). In conclusion, images labeled
with “Coreg, Avg, Std Img and Vox Siz, Uniform Resolution” were
downloaded and used in this study.

2.2. Classification framework

The framework of our proposed indirect relation based individual
network for classification is provided in Fig.1. There are five main steps:
1) image pre-processing, 2) direct relation based network construction,
3) indirect relation based network construction, 4) feature reduction,
and 5) classification.

2.2.1. Image pre-processing
The spatial preprocessing of PET images was implemented by

Statistical Parametric Mapping software package 8 (SPM8) (http://
www.fil.ion.ucl.ac.uk/spm). PET images acquired from the same par-
ticipant were firstly realigned to the mean image in the series. Then, all
images were co-registered into the Montreal Neurological Institute
(MNI) space to correct individual differences in brain morphological
parameters.

2.2.2. Direct relation based network construction
In this study, the individual metabolic network was constructed

based on cerebral glucose metabolism measurements from PET data.

Prior to network construction, cerebral glucose metabolism data of all
brain regions except the cerebellum was normalized to [0,1] using Min-
Max normalization (Han and Kamber, 2006), the normalized data was
partitioned into 90 regions of interest (ROIs) by Automated Anatomical
Labeling (AAL) (Tzouriomazoyer et al., 2002) template, and then the 90
ROIs were utilized as nodes of the network. For each ROI, mean signal
intensity and standard deviation were computed. Then a 90× 90 cor-
relative matrix was constructed with every element representing the
correlation of average intensity between a pair of ROIs (Wee et al.,
2013).

Specifically, the dissimilarity of average intensity of two regions is
defined by Euclidean metric:

= −d a b t a t b( , ) ( ( ) ( ))2 (1)

where t(a) and t(b) denote mean glucose metabolism intensity of region
a and region b, respectively. The correlation of two regions is defined by
exponential function:

=
−

+
r a b exp d a b

σ σ
( , ) ( ( , )

2( )
)

a b (2)

where σa and σb denote the standard deviation of glucose metabolism
intensity of region a and region b, respectively. The standard deviation
is employed to improve dissimilarity magnitude and individual di-
versity (Zheng et al., 2015).

Fig. 1. The proposed classification framework.
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Based on above analysis, each subject obtained a 90×90 correla-
tion matrix which was symmetric with ones along its diagonal. The
elements in the matrix reflect the direct relation between a pair of ROIs.
Then we replaced ones with zeros in diagonal, which means region it-
self has no relation. Therefore, direct relation based brain metabolic
network was constructed for each subject.

2.2.3. Indirect relation based network construction
Although region-to-region correlation can reflect the relation of two

regions directly, it is a rough representation and relies on limited in-
formation of two regions. The correlation of regions’ relation, which is
called the indirect relation, could provide more information and reflect
two regions’ correlation exactly. For each pair of regions, the indirect
relation is calculated by following steps. Firstly, the K nearest neighbors
of each region are found using direct relation values. Note that K is a
parameter set by experiments. Secondly, the same nearest neighbors of
two regions are regarded as their common neighbors. It’s remarkable
that two regions may have no common neighbors because their K
nearest neighbors’ sets do not intersect. In this case, we regard the two
regions have no indirect relation and free the calculation behind.
Thirdly, the direct relations of two regions and their common neighbors
are represented by two feature vectors, respectively. At last, the cor-
relation of the two feature vectors is described by lattice-close-degree.

Take region a and region b as example, we first sorted the direct
relation values of region a to other regions in descending order. The
greater the value, the closer the relationship is. So the K (K∈[1,89])
nearest neighbors of region a were found. The same operation was done
to region b to find its K nearest neighbors. Then we found the common
neighbors of region a and region b, which were represented as set U=
{n1,n2,…nM}, M∈[1,88]. The direct relations of region a and region b to
common neighbors were represented by feature vectors

∼

A n( ) ={r

(a,n1),r(a,n2),…r(a,nM)} and
∼

B n( ) ={r(b,n1),r(b,n2),…r(b,nM)},

M∈[1,88], respectively. Above process is illustrated in Fig.2. The cor-
relation of feature vectors

∼

A n( ) and
∼

B n( ) was computed to represent

the indirect relation of region a and region b. The lattice-close-degree of
fuzzy sets (Xie and Liu, 2013) was used to descript the correlation of
two feature vectors.

∨∘ = ∧

∼ ∼ ∈ ∼ ∼

A B A Bn n[ ( ) ( )]
n U (3)

⊙ = ∧ ∨

∼ ∼ ∈ ∼ ∼

A B A Bn n[ ( ) ( )]
n U (4)

where ∘
∼ ∼

A B is the inner product, ⊙
∼ ∼

A B is the outer product. When

∘
∼ ∼

A B is larger and ⊙
∼ ∼

A B is smaller, the two fuzzy sets are closer. The

lattice-close-degree can be defined as follows:

= ∘ + − ⊙

∼ ∼ ∼ ∼ ∼ ∼

A B A B A Bσ ( , ) 1
2

[ (1 )]
(5)

Obviously, when
∼ ∼

A Bσ ( , ) is larger, the correlation of two feature vec-

tors is greater. Specifically, if two regions don’t have common neigh-
bors, the value of indirect relation is set to be zero. For each subject, we
computed the lattice-close-degree for each pair of ROIs, and obtained a
90× 90 symmetric matrix. The diagonal of the matrix are set to be
zeros also means region itself has no indirect relation. The upper tri-
angle of each matrix was extracted and concatenated to form a feature
vector with a length of 90×(90-1) / 2=4005.

2.2.4. Feature reduction
Feature reduction is used to remove redundant and noisy variables,

a process which mitigates the curse-of-dimensionality and small-n-
large-p effects (Mwangi et al., 2014). Feature reduction in our frame-
work includes two steps: t-test based feature subset selection and PCA
dimensionality reduction. At first, an unpaired two-sample t-test was
applied to retain features that showed statistical differences. Specifi-
cally, the features with significant differences (p < 0.05, uncorrected)
between two different groups were retained. However, the feature set
selected by t-test was discriminative but not optimal for classification.
The selected features were correlated and the number was still far more
than that of the samples. To deal with that, principal component ana-
lysis (PCA) (Joliffe, 2002; López et al., 2011) was applied to further
reduce dimensionality. PCA convert the original features to a smaller
number of uncorrelated features with largest amount of variance by a
linear transformation. The original features are firstly normalized using
zero-mean normalization. Then, Eigen decomposition of the covariance
matrix from the standardized data is performed. The resulting eigen-
vectors are a new set of uncorrelated features, whose variances are
represented by eigenvalues. Thirdly, eigenvalues are sorted in

Fig. 2. The process of finding common neighbors of region a and region b.
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decreasing order and the ‘leading’ eigenvectors explaining most of the
variance in the data are found. Lastly, principal components are con-
structed by multiplying the originally normalized data with the
‘leading’ eigenvectors whose exact number is a user-defined parameter.
In this study, PCA was applied to the selected feature set by t-test and
fewer uncorrelated features were acquired for classification.

2.2.5. Classification
Based on the extracted features above, the classification model was

constructed using support vector machine (SVM) (Cortes and Vapnik,
1995) classifier. The aim of SVM is to find the maximum margin hy-
perplane that represent the largest margin between two clinical groups
in the feature space. The boundaries of the hyperplane were re-
presented by support vectors, equivalent to the training samples on the
margins. In this study, SVM with radial basis function (RBF) kernel was
performed using LIBSVM (Chang and Lin, 2001) on MATLAB. The RBF
kernel is formulated as follows:

= −
−

k x x exp
x x

σ
( , ) (

‖ ‖
2

)i j
i j

2

2 (6)

where xi and xj are two feature vectors, and σ is the width of the
Gaussian kernel. To acquire an unbiased estimate of true classification
performance, we employed 10-fold cross-validation that initially di-
vided all samples to 10 subsets and then iteratively left one subset out
of training for subsequent testing until each of the 10 subsets were
validated. To avoid possible bias, we repeated the cross-validation
process for 10 times and obtained a mean value of classification per-
formance. The default parameters were used for SVM.

3. Results

3.1. Classification performance

The classification performance between direct relation features in
(Wee et al., 2013) and the proposed indirect relation features were
compared firstly in this subsection. Then, two relation features were
integrated to identify whether the performance could be improved. In
addition, Mini-Mental State Exam (MMSE) scores and Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-cog) scores were
considered to be important clinical variables to help evaluate the stage
of AD pathology and predict future progression, providing outstanding
contribution for accuracy improvement (Landau et al., 2011; Li et al.,
2014; Chen et al., 2016; Liu et al., 2017). In this work, the indirect
relation features and two clinical variables were combined respectively
by concatenating into a vector for further improvement. The perfor-
mance of each compared feature was evaluated by mean classification
accuracy, sensitivity, specificity and area under receiver operating
characteristic curve (AUC). In order to examine whether the difference
in classification accuracy was statistically significant, a paired t-test at
95% significance level was conduct.

As is shown in Table 2, the performance of indirect relation features
was significantly better than that of the direct relation features in two
tasks. In particular, the accuracy was achieved to 83.29% in distin-
guishing MCI patients from healthy controls with AUC of 0.9254, sen-
sitivity of 78.43% and specificity of 88.74%. The small p-value
(p < 0.0001) for classification accuracy also indicated the superiority
of the indirect relation features over the direct relation features.
However, compared to indirect relation features, the integrated relation
features didn’t exhibit better performance except specificity reached to
90.22%. When entered clinical variable, further significant improve-
ment was observed in MCI/NC classification task. Particularly, the ac-
curacy was achieved to 86.40% (p < 0.0001) with a high AUC of
0.9360, sensitivity of 79.55% and specificity of 95.02% when ADAS-cog
scores entered, which indicated excellent diagnostic power of the
combined features.

In the prediction of MCI-to-AD conversion, Table 2 shows our

proposed framework performed much better than that using direct re-
lation features, which achieved the accuracy and AUC of 79.47%
(p < 0.0001) and 0.8692. The integrated relation features had no
significant differences with indirect relation features in accuracy, sen-
sitivity and specificity by t-test (H=0), but it achieved a higher AUC of
0.8731. The predictive power met an increasing promotion when
combined indirect relation features with ADAS-cog scores, the final
accuracy achieved to 83.59%, with sensitivity of 82.26%, specificity of
85.37% and AUC of 0.9255. Therefore, compared to MMSE scores,
ADAS-cog scores provided more complementary information for in-
direct relation features.

Fig. 3 illustrates the receiver operating characteristic (ROC) curve of
relation features, clinical variables, and combination of indirect relation
features with clinical variables in two tasks. It can be clearly observed
that the indirect relation features derived from direct relation features
surpassed its original form. In addition, ADAS-cog scores and MMSE
scores exhibited different distinguishing abilities, so indirect relation
features combined with proper clinical variable can obtain encouraging
results in classification and prediction.

3.2. Discriminative indirect relations

In this subsection, we found the discriminative indirect relations
using t-test for above two tasks respectively. To remove the effect of age
and gender, a linear regression was performed before statistical ana-
lysis. An unpaired two-sample t-test with threshold of 0.05 was applied
to find the discriminative indirect relations. Then, the comparison was
corrected using Benjamini and Hochberg’s false discovery rate (BH-
FDR) control algorithm, which is to find the maximum i meets

<p i n* 0.05/i (n= 4005) (Benjamini and Hochberg, 1995; Benjamini
et al., 2006).

Fig. 4(a) shows the average indirect relation networks of NC and
MCI (neighbor’s number K=7), while Fig. 4(b) shows the average
indirect relation networks of sMCI and pMCI (neighbor’s number
K=24). In each group, although two networks look similar, a few
differences can be found (see the red circle). In NC/MCI group, some
indirect relations between areas such as hippocampus and inferior oc-
cipital gyrus, middle temporal gyrus and inferior temporal gyrus,
amygdala and angular gyrus, insula and inferior temporal gyrus are all
observed increasing trend, while the indirect relations between areas
such as bilateral hippocampus, caudate nucleus and thalamus, rolandic
operculum and parahippocampal gyrus, insula and caudate nucleus
shows decreasing trend.

In the third line of Fig. 4, significant differences exist in the indirect
relations were marked as black in binary images. The significant dif-
ference proportion of indirect relation in pMCI vs. sMCI (26.17%) is
lower than that in MCI vs.NC (30.31%), corresponding to the fact that
the boundary of these two subgroups is hard to distinguish and also
explaining that separating pMCI from sMCI is a challenging task. Top
20 discriminative indirect relations listed in Table 3 for separating
pMCI from sMCI, were selected by t-test and BH-FDR correction. It can
be observed that the discriminative indirect relations widely exist in the
whole brain rather than only in the side of hemisphere. These abnormal
changes are visualized in Fig.5 and the abbreviations are listed in
Table 4.

3.3. The most discriminative regions

In this subsection, the most discriminative regions were found using
a weight-based statistics method for each task, respectively. Firstly, the
top 200 discriminative indirect relations were selected by t-test
(p < 0.05, BH-FDR corrected) and sorted in ascending order of p value.
It was obvious that the brain regions involved in the indirect relations
with smaller p value are more discriminative. Hence, the brain regions
in different indirect relations should be set to different weights. The
brain region’s weight in one relation was defined in equation (7). Then,
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for each region, the weights in the top 200 discriminative indirect re-
lations were counted. After normalization, the weight of each brain
region was obtained. Fig.6 shows the results and 10 most discriminative
regions are labeled by abbreviations (The abbreviations are also listed
in Table 4). It could be observed that the regions: hippocampus, tem-
poral pole: superior temporal gyrus, caudate nucleus, Lenticular nu-
cleus, pallidum are four most discriminative regions in both MCI di-
agnosis and convert prediction, which means they changed significantly
in different stages of neurodegenerative disease. The regions inferior
temporal gyrus, angular gyrus, inferior occipital gyrus and insula also
played an important role in MCI vs.NC classification. In separating
pMCI from sMCI, the abnormal regions also include: amygdala, pre-
central gyrus, temporal pole: middle temporal gyrus, bilateral para-
hippocampal gyrus and cuneus.

= −w lg p( ) (7)

4. Discussion

This study introduced a novel feature extraction method to establish
individual network using FDG-PET data for the identification of mild
cognitive impairment. Unlike computing region-to-region correlation
only using limited between-region information, we proposed the in-
direct relation that is the correlation of regions’ relation, which could
provide deep inherent information for studying MCI. The lattice-close-
degree in fuzzy mathematics was applied to reflect region-to-region
indirect relation. Results suggest that our method outperformed direct
relation features using a large number of subjects from ADNI database.
Lastly, a weight-based statistics method was employed to find the most

discriminative regions involved in the discriminative indirect relations.

4.1. Classification performance analysis

The change of glucose metabolism caused by AD and MCI patho-
logical attacks are not restricted to certain brain areas, but widely
spread over the whole brain (Langbaum et al., 2009; Illan et al., 2011).
Compared to ROI-based and voxel-based characteristics, the correlative
features reveal the alterations between brain regions either adjacent or
distant and might convey more useful information. In addition, the
brain network is regarded to be relatively less sensitive to the influence
of individual diversity and more robust than ROI-based characteristics
(Dai et al., 2012; Zheng et al., 2015).Therefore, the network construc-
tion using between-region information has been successfully applied in
classification and abnormal regions recognition. Based on further study,
the indirect relation network we presented can reflect two regions’ re-
lation exactly in virtue of exploiting more regions’ inherent informa-
tion. In MCI diagnosis, results show that indirect relation alterations are
more discriminative than direct relation alterations, and they give
better classification performance (see Table 2). It is noteworthy that the
high AUC of 0.9254 can reflect high precision and great power in MCI
automatic diagnosis. However, when integrating two relation features,
performance is not better than that of indirect relation features, sug-
gesting two relation features have some redundant information owing
to indirect relation derived from direct relation. To further promote
classification performance, we combine the reduced indirect relation
features with clinical variables. As shown in Table 2, ADAS-cog scores
are more discriminative than MMSE scores. Therefore, significant im-
provements (accuracy of 86.40%) are achieved by combining indirect

Table 2
Classification and prediction performance of different features.

Feature MCI vs. NC pMCI vs. sMCI

ACC
(%)

SEN
(%)

SPE
(%)

AUC ACC
(%)

SEN
(%)

SPE
(%)

AUC

Relation feature
Direct relation 76.09 77.94 73.96 0.8213 69.05 68.69 71.55 0.7569
Indirect relation 83.29 78.43 88.74 0.9254 79.47 76.49 83.20 0.8692
Direct relation+ Indirect relation 82.79 76.54 90.22 0.9156 78.69 75.47 81.34 0.8731
Clinical variables
MMSE score 70.39 77.70 64.08 0.7377 62.03 63.82 61.32 0.5398
ADAS-cog score 76.18 75.16 77.82 0.8359 74.60 83.06 66.11 0.7901
Relation feature+Clinical variables
Indirect relation+MMSE score 82.15 74.07 92.13 0.9435 75.12 72.66 78.88 0.8658
Indirect relation+ADAS-cog score 86.40 79.55 95.02 0.9360 83.59 82.26 85.37 0.9255

ACC= accuracy; SEN= sensitivity; SPE= specificity; AUC= area under ROC curve.

Fig. 3. (a) ROC curve of MCI vs. NC; (b) ROC curve of pMCI vs. sMCI (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article).
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relation features with ADAS-cog scores, indicating excellent diagnostic
power and generalizability of the combined features to unseen dataset.
Note that the high specificity of 95.02% also indicates our method has
extremely low false rate in MCI diagnose. In addition, the results imply
that ADAS-cog scores deliver some complementary information into
indirect relation features.

The identification of MCI converters from non-converters is critical
for preventing or delaying AD, particularly from a clinical and financial
perspective. Our findings demonstrate that the proposed framework can
detect the subtle correlation changes of brain regions’ glucose

metabolism that help to identify those MCI individuals who converted
to AD up to 36 months before clinical diagnosis. As shown in Table 2,
poor performance of MMSE scores denotes the fact pMCI and sMCI have
less difference in this clinical variable. Yet when entered ADAS-cog
scores, the predicted accuracy is reach to 83.59% with a high AUC
value of 0.9255, which also due to ADAS-cog scores provide useful
complementary information for indirect relation features.

Fig. 4. (a) the average indirect networks of NC and MCI (neighbor’s number K= 7); (b) the average indirect networks of sMCI and pMCI (neighbor’s number K=24).
In each group, two networks look similar, but a few differences can be found (see the red circle).The third row shows the between-group differences of indirect
relations (p < 0.05, BH-FDR corrected): (c) MCI vs. NC, (d) pMCI vs. sMCI. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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4.2. Methods analysis

The indirect relation based individual network construction via
glucose metabolism can be divided into direct relation calculation and
indirect relation calculation. Direct relation calculation computes the
correlation of two regions using Gaussian kernel function. The direct
relation of two regions with their common neighbors constitute two
fuzzy sets, the close-degree of two fuzzy sets, which represents indirect
relation of two regions, is calculated by lattice-close-degree. The ex-
planation of our network performed better may be as follows: 1) Using
indirect relation of regions. In our study, the correlation of two regions
is reflected by close-degree of multi-region rather than between-region
information. Indirect relation employs abundant inherent information,
which is robust to noise and individual diversity in glucose metabolism.
2) Two-step feature reduction method. In this work, a two-step feature
reduction method includes two-sample t-test and PCA is used to find a
feature subset for SVM classifier. Two-sample t-test, which is one of
statistical hypothesis testing techniques, has extensively been used to
detect group-level differences in neuroimaging studies (Saeys et al.,
2007; Mwangi et al., 2014). It is computationally fast and scale well to
high dimensional data meaning it could select a small subset of relevant
features from the original high-dimensional indirect relation features.
However, although the features with no significant difference have
been removed, the remaining features are still far more than the

samples. To overcome the overfitting problem, PCA is used to further
reduce feature dimensionality. The relevant features with significant
differences are transformed into a smaller number of uncorrelated
variables by PCA, which are used for subsequent classification. Two-
step feature reduction is also important for the integration of indirect
features and clinical variable, because a large number of indirect rela-
tion features would weaken the role of clinical variable.

4.3. Discriminative regions analysis

We utilized t-test (p < 0.05, BH-FDR corrected) to find the dis-
criminative indirect relations for each task. The discriminative indirect
relations mentioned above are located either in the same hemisphere,
or widely spread over the whole brain, suggesting the abnormalities
caused by MCI have affected the entire brain rather than certain areas.
Additionally, it is a remarkable fact that the indirect relation is more
discriminative, the regions it involved are more likely to be abnormal
alterations. Hence, we employed a weight-based statistics method
which used p-value and logarithmic function to find the most dis-
criminative abnormal regions. The brain regions we found (see Fig.6)
have been reported to have abnormal alterations in MCI patients, as
well as in AD conversion process, such as caudate nucleus, cuneus and
precentral gyrus (Pagani et al., 2015), inferior occipital gyrus (Khazaee
et al., 2016), hippocampus and amygdala (Pagani et al., 2015;

Table 3
Top 20 discriminative indirect relations in pMCI vs. sMCI.

Rank Indirect Relation Rank Indirect Relation

1 Precentral_L - Postcentral_L 11 Caudate_R -
Temporal_Pole_Mid_R

2 Olfactory_L - Olfactory_R 12 ParaHippocampal_R -
Amygdala_R

3 Frontal_Sup_R - Frontal_Mid_R 13 Precentral_L -
Supp_Motor_Area_R

4 ParaHippocampal_R -
Amygdala_L

14 Supp_Motor_Area_R -
Paracentral_Lobule_R

5 Calcarine_L - Cuneus_L 15 Amygdala_L -
Temporal_Pole_Sup_L

6 ParaHippocampal_L-
Temporal_Pole_Sup_L

16 Temporal_Pole_Sup_L -
Temporal_Pole_Sup_R

7 Temporal_Pole_Mid_L-
Temporal_Pole_Mid_R

17 Precentral_L - Calcarine_L

8 Precentral_L - Cuneus_L 18 Hippocampus_L - Amygdala_L
9 ParaHippocampal_L -

ParaHippocampal_R
19 Temporal_Pole_Sup_L -

Temporal_Pole_Mid_R
10 Amygdala_L -

Temporal_Pole_Mid_R
20 Cuneus_L - Cuneus_R

L= left; R= right.

Fig. 5. Visualization of the top 20 discriminative indirect relations selected by t-test (p < 0.05, BH-FDR corrected). Red (blue) line means the average weight in
pMCI group is larger (smaller) than that in sMCI group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article).

Table 4
Abbreviations of the AAL regions shown in Fig.5 and Fig. 6.

Region ID AAL regions Abbreviations

1 Precentral PreCG
2 Postcentral PoCG
3 Olfactory OLF
4 Frontal_Sup SFGdor
5 Frontal_Mid MFG
6 ParaHippocampal PHG
7 Amygdala AMYG
8 Calcarine CAL
9 Cuneus CUN
10 Temporal_Pole_Sup TPOsup
11 Temporal_Pole_Mid TPOmid
12 Caudate CAU
13 Supp_Motor_Area SMA
14 Paracentral_Lobule PCL
15 Hippocampus HIP
16 Pallidum PAL
17 Temporal_Inf ITG
18 Angular ANG
19 Occipital_Inf IOG
20 Insula INS
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Youssofzadeh et al.,2017), lenticular nucleus, pallidum (Sanabriadiaz
et al., 2013; Ballarini et al., 2016), parahippocampal gyrus (Reiman
et al., 2001; Kim et al., 2005; Youssofzadeh et al.,2017), temporal pole:
superior temporal gyrus (Chen et al., 2016), angular gyrus, inferior and
middle temporal gyrus (Khazaee et al., 2016; Wang et al., 2016), insula
(Chételat et al., 2008; Misra et al., 2009; Förster et al., 2010; Ewers
et al., 2011). The fact that our findings are consistent with previous
studies indicates the efficacy of our constructed network in identifying
correct biomarkers for diagnosing MCI and predicting its conversion.

4.4. Limitations

Despite addressing some challenges, a number of limitations exist in
the present study. Firstly, as an influence factor to the performance, the
number of common neighbors K was set by experiments in this work.
Hence, optimal method and more proper explanation should be
exploited to set K. Secondly, another influence factor to classification
accuracy is brain atlas (Ota et al., 2014; Min et al., 2015), other proper
partition could be tried to improve the results. Future studies will apply
the framework to other imaging data modalities, such as AβPET and
MRI. Since the indirect relation based network of more imaging data
modalities could describe the abnormal alterations in different per-
spectives. Besides, better close-degree description method of fuzzy sets
also need to be explored.

5. Conclusions

In summary, we propose a novel approach of extracting individual
network pattern from PET data. The network is constructed based on
indirect relations, which could provide more inherent information and
reflect regions’ correlation exactly and overall. Moreover, a weight-
based statistics method is employed to find the abnormal regions at-
tacked by diseases. Results show that indirect relation features greatly
exceed the performance of direct relation features in both classification
and prediction. When combined with ADAS-cog scores, significant im-
provements can be observed. The most discriminative regions we found
are consistent with previous studies indicate that our proposed network
could identify correct biomarkers for MCI identification. In a word, this
work offers a new network-based perspective for detecting MCI and
predicting its conversion. Our results also give support to the feasibility
of individual glucose metabolism network.
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