
Received August 17, 2018, accepted September 19, 2018, date of publication October 1, 2018, date of current version October 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2872698

Understanding Mixup Training Methods
DAOJUN LIANG 1, FENG YANG 1, TIAN ZHANG 1, AND PETER YANG2
1School of Information Science and Engineering, Shandong Normal University, Jinan 250014, China
2Amazon, Seattle, WA 98101, USA

Corresponding author: Feng Yang (yangfeng@sdnu.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant 61801277 and Grant 61373081.

ABSTRACT Mixup is a neural network training method that generates new samples by linear interpolation
of multiple samples and their labels. The mixup training method has better generalization ability than the
traditional empirical risk minimization method (ERM). But there is a lack of a more intuitive understanding
of why mixup will perform better. In this paper, several different sample mixing methods are used to test how
neural networks learn and infer from mixed samples to illustrate how mixups work as a data augmentation
method and how it regularizes neural networks. Then, amethod of weighting noise perturbation was designed
to visualize the loss functions of mixup and ERM training methods to analyze the properties of their high-
dimensional decision surfaces. Finally, by analyzing the mixture of samples and their labels, a spatial mixup
approach was proposed that achieved the state-of-the-art performance on the CIFAR and ImageNet data
sets. This method also enables the generative adversarial nets to have more stable training process and more
diverse sample generation ability.

INDEX TERMS Machine learning, computer vision, image processing.

I. INTRODUCTION
Deep Neural Networks have made breakthroughs progress
in many fields [1]–[3]. However, neural networks tend to
have more parameters than the training data, which allows
the neural network to overfit any training data [4]. There
are many ways to avoid the overfitting of datasets with
such huge parameters [1], [5]–[11]. These methods can be
roughly divided into two categories: data augmentation meth-
ods and regularizationmethods. The data augmentationmeth-
ods allow the neural network to train on more samples to
avoid it remembering certain samples. The regularization
methods can reduce the complexity of the network model by
limiting or adjusting the model parameters. These methods
are widely used in deep neural networks because they do not
increase the model parameters and are easy to implement.

Recently, in DisturbLabel [12], a small number of sample
labels were randomly replaced with other labels. This is a
regularizationmethod that is used at the loss layer to allow the
neural network to avoid overfitting and enhance its general-
ization performance. In SamplePairing [13] and mixup [14],
a method of training a neural network using two samples
simultaneously is proposed. SamplePairing randomly picks
one sample in the training set to add to the original sample
and uses the original sample’s label to train the network. The
mixup uses a random value to weight the two samples and
their corresponding labels. All of the above methods have

some effect of data augmentation and regularization, and they
can achieve better generalization performance than Empirical
Risk Minimization (ERM) [15]. However, the reason why
these methods can achieve regularization and data augmen-
tation has not been well understood.

There are two ways to understand mixup training, one is
to use the synthetic sample as a new sample and the other
is to use the synthetic sample as a linear combination of the
original sample. The former view shows that mixup uses a
linear interpolation of different classes of samples to gener-
ate new samples. Different linear interpolation will produce
different new samples, which makes the neural network have
more opportunities to sample new data to avoid overfitting.
This shows that mixup is a data augmentationmethod.We use
a variable ratio to generate new samples and different ranges
of sample interpolation to investigate whether data augmen-
tation enhances generalization performance. This experiment
shows that mixup, as a data augmentation method, produces
far fewer new samples than its linear interpolation capability,
but much larger than the number of combinations between
multiple classes. The latter view shows that mixup can learn
multiple samples at the same time and can avoid confusion
between multiple samples so that two different categories can
be easily separated. This shows that mixup plays a regular-
ized role to a great extent. We visualize the loss function
of the neural network trained with mixup and find that it is

58774
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-7136-0482
https://orcid.org/0000-0002-4854-6331
https://orcid.org/0000-0003-4909-4119


D. Liang et al.: Understanding Mixup Training Methods

flatter than the neural network trained by ERM and the curl
of the decision surface between several classes is relatively
low, making neural network more easily predict the linear
interpolation between samples.

Our experiment shows that there is a positive correlation
between the input information of neural network and the
output information of its loss layer. Based on this, the spa-
tial images are stitched in different proportions by different
combinations, and its label information is proportional to
its spatial information. This method can achieve the same
effect as the original mixup. Different from the way that the
originalmixup linearly interpolates the channels of the image,
the stitching of the spatial image is to interpolate the natural
distribution of the samples. This makes it two orthogonal data
augmentation methods with the original mixup. Combining
all kinds of mixup methods can make the training data more
diverse and the regularization effect more powerful, so as to
further improve the generalization ability of the network. Our
method have achieved the state of the art on CIFAR [16]
and ImageNet [17] datasets, and the code implemented by
Pytorch1 is available on GitHub.2

Generative adversarial nets (GAN) [18] has achieved good
results in image generation tasks. The difficulties in this task
are the instability of training [19], [20] and the problem
of mode collapse [21]. Instability will lead to the network
difficult to train, mode collapse will cause the network to
generate a single image mode. In order to make GAN have
a more stable training process and generate more diverse
images, various mixup methods are used in image editing
tasks to take full advantage of their data augmentation and
regularization. The GAN trained using the mixup method is
calledMixGAN.We used CycleGAN [22] to experiment with
the task of image-to-image transformation [23]–[26]. The
experimental results show that the MixGAN can transform
the style of the mixture of spatial and maintain the original
mixing ratio. Compared with the original training method
requires less training time, and the generated images have
more variety of details.

II. RELATED WORK
The neural network has a lot of hyper-parameters andmillions
of training parameters, so that it has strong fitting ability and
even can fit random noise [4]. Therefore, it is a challenging
job to reduce the overfitting of neural networks.

Extending the dataset and regularizing the model can
reduce the overfitting of the model from different aspects.
Some data augmentation techniques directly distort data
space, such as, translation, rotation, flipping, cropping,
adding noises, etc. Other methods use slightly more sophis-
ticated methods such as PatchShuffle [28] which divides the
sample data into several different patches, sorting the pixels
in each patch according to a certain rule, while keeping the
overall structure of the image intact. [29] randomly select a

1https://pytorch.org
2https://github.com/liangdaojun/spatial-mixup

rectangular area in the image, and fill the area with Gaussian
noise, making the original information of the area is blocked,
forcing the neural network to infer about the part of the
information. SamplePairing [13] randomly picks a sample
in the training set and adds it to the original sample to
produce a new sample. These methods make the processed
image slightly different from the original image, although the
enhanced data may not be in line with the original sample
distribution nor independent of the original sample. However,
this can make the neural network learn other models related
to the original sample, which can make the neural network
have a more diversified representation ability and thus have
better generalization performance.

There’s a lot of work related to regularization. Dropout [5]
and DropConnect [9] make each neuron more capable of
representation by discarding a certain percentage of neurons
or connecting paths during training. Stochastic Depth [30]
averages architectures with various depths through randomly
skipping layers. Swapout [31] samples from abundant set of
architectures with dropout and stochastic depth as its special
case. These methods serve as a model integration in depth,
and [32] attempts to demonstrate that dropout is equivalent
to data augmentation to some extent. In batch normaliza-
tion (BN) [10], the features of each layer in the network will
be given a normal distribution again, which makes the neural
network easier to learn. Recently, there have been someworks
to regularize the model at the loss layer. DisturbLabel [12]
use an extremely simple algorithm to randomly replaces a
part of labels as incorrect values in each iteration. In [14],
mixup trains a neural network on convex combinations of
pairs of examples and their labels, which regularizes the
neural network to favor simple linear behavior in-between
training examples.

Neural networks have long been considered black boxes
because there is no good theory to explain their generalization
effect. Much of the current interpretation is based on very
strong assumptions, which are quite different from the actual
situation and not very practical in practice. By visualizing
the loss function of neural network, the influence of dif-
ferent training methods on the loss function can be more
intuitively understood, and the differences between different
training methods can be compared better. Several works have
attempted to study the loss surfaces of deep nonlinear neural
networks [33]–[35]. Reference [33] attempted to understand
the loss function of neural networks through studying the ran-
dom Gaussian error functions of Ising models. [35] studied
the loss surface along the line between a random guess, and
a nearby minimizer obtained by stochastic gradient descent.
We propose a method of weighting noise disturbances that
can alter all network parameters to visualize the loss function.

Image-to-image translation is a class of vision and graphics
problems where the goal is to learn the mapping between
an input image and an output image using a training set
of aligned image pairs. Some work has proposed bidirec-
tional mapping methods when pairs of images are not avail-
able, such as [22]. The approach builds on the ‘‘pix2pix’’

VOLUME 6, 2018 58775



D. Liang et al.: Understanding Mixup Training Methods

FIGURE 1. The effect of different proportions of mixed samples and labels on network training or test accuracy. The x-axis
mean the range of values for λ. The train-x1x2 and train-x2x1 means that during training or testing, sample x1 and sample x2
are mixed in different proportions and then input to the network, and the two maximum probabilities of the network output
are taken as the categories corresponding to the two samples respectively. All experiments were done using
PreAct-Resnet [27] on CIFAR-10 [16] dataset. (a) λX = 0.5. (b) λI = 0.5. (c) λX = λI . (d) λX 6= λI .

framework of Isola et al. [36], which uses a conditional
generative adversarial network [18] to learn a mapping from
input to output images. In this paper, we combine the spatial
mixup with the GAN to implement the image editing task.

III. METHOD
In this section, the generalization performance of mixups in
different mixing ranges is first explored in Section III-A.
In Section III-B, the ability of mixup and ERM to predict
multiple samples simultaneously was tested. Section III-C
uses the weighted noise disturbance method to visualize the
loss function of the two training methods.

A. GENERAL MIXUP
The mixup in the original paper is implemented by using a
random value to weight the samples and their labels.

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj (1)

where (xi, yi) and (xj, yj) are two examples drawn at random
from our training data, and λ ∼ Beta(α, α) for λ ∈ [0, 1],
α ∈ (0, inf). In the mixup, training samples and their labels
simultaneously reduce the λ or 1 − λ times, implying this
linear relationship. The signal strength scaled by λ or 1 − λ
times, the corresponding label signal also scaled by λ or 1−λ
times. Our experiments show that training samples and their
labels do not simply have a linear relationship. We can use
the different distributions of random values to separately
weighted average the training samples and their labels, and
can achieve the same effect as the mixup.

In order to explore the impact of the mixing of images
and their labels on the performance of the network, we either
interpolate the images or interpolate their labels, or interpo-
late them at the same time. The Uniform distribution can
better control the range of λ compared to the Beta distribu-
tion, and has the same effect on some datasets. Therefore,
the Uniform distribution is adopted to control the sampling of
λ. We use λx to represent the mixing ratio of two samples x
for λ ∈Uniform(λ1, λ2), and Rl to represent the mixing ratio

of two labels y for λ ∈Uniform(λ1, λ2), where 0 ≤ λ1 ≤

λ ≤ λ2 ≤ 1. When λx = λl , we denote them as λ.
Figure 1 shows the difference between λx and λl on

network training accuracy and test accuracy. In Figure 1.a,
λx = 0.5, so that λl is mixed in different ratios, which
means that the same sample will correspond to a different
label. It can be observed that network performance decreases
with increasing range of λl . Similarly, in Figure 1.b, making
λl = 0.5 and changing λx , which means that the linearly
interpolated samples correspond to the same label, we can
see that the network performance increases with the increase
of the λx range. In contrast to the change λl , the network
performance of the varying λx will be consistently higher than
the change λl . Figure 1.a shows that using different label sig-
nals for the same sample will result in a strong regularization
of the network, leading to instable learning of the training
samples, resulting in underfitted networks. In Figure 1.b, λx
was changed for all other experiments compared to λx = 0.5
and λl = 0.5, and the label was not altered. This shows
that linear interpolation of samples can indeed achieve data
augmentation.

In Figure 1.c, λx = λl , that is, the mixing ratio between
the sample and their label is the same. It is noteworthy that
when λ’s range of variation in [0,1], it is the original mixup.
It can be seen from the figure that the performance of the
network increases as the range of λ changes. The same result
can also be observed in Figure 1.d, but in Figure 1.d, λx
and λl are limited to the asymmetrical range of variation
with a mixing ratio above 0.5. Although in both graphs the
performance of the network is higher than that of the only
one, and the network performance is almost the same when λ
is in the range of [0.5,1] and [0,1]. This shows that neural
networks optimize each category alternately when training
multiple samples and labels simultaneously. That is, in a
forward process, when the network parameter is adjusted to
a category, the other category plays a regularization role.

Predicting both categories helps to analyze the level of
confusion that neural networks have over different categories.
The train-x1x2 in the Figure 1 represents the prediction

58776 VOLUME 6, 2018



D. Liang et al.: Understanding Mixup Training Methods

accuracy of both categories at the same time, and the
train-x2x1 represents the precision of the neural network,
which classifies two samples into each other. For instance,
when the input is λx1 + (1 − λ)x2 or λx2 + (1 − λ)x1,
the corresponding train-x1x2 and train-x2x1 accuracy mea-
sures the proportion of the outputs that ranks the top-2 predic-
tion as (y1, y2). In Figure 1.a-c, the train-x1x2 and train-x2x1
are almost equal, which shows that the network can not
distinguish the two samples into different categories at the
same time. As the mixing range λ increases, the training
accuracy and testing accuracy of the network increase, but
the train-x1x2 and train-x2x1 gradually decreases. This is
because as the combination of samples increases, the network
needs to fit a wider distribution of loss layers during training,
which will increase the probability of misclassification of
samples with less information. In Figure 1.d, the difference
in precision between the train-x1x2 and train-x2x1 is widened,
demonstrating that their network will be less obfuscated for
both samples. Because this trainingmethod uses an asymmet-
ric combination of samples, one of the categories will result
in a high prediction accuracy.

B. MIXUP AND ERM’S MULTI-CATEGORY TEST
To further compare the generalization ability of mixups and
ERMs for mixed samples, we use mixup and ERM meth-
ods to test the trained networks with different mixing ratios
respectively. In this experiment, λ takes values from 0 to 1 in
steps of 0.01. The experiment was run on CIFAR-10 [16],
using PreAct-Resnet [27]. Since λ has 100 values, we will
test 100 steps. The single-class prediction accuracy and
multi-class prediction accuracy of the network are shown
in Figure 2. The test-x1x2 in the Figure 1 represents the
prediction accuracy of both categories at the same time,
and test-x2x1 represents the precision of the neural network,
which classifies two samples into each other. From Figure 2,
we can see that with the increase of λ, the accuracy of sam-
ple x1 increases with ‘‘S’’ curve and the accuracy of sample x2
decreases with ‘‘S’’ curve, and test-x1x2 and test-x2x1 are also
similar. The difference is that the curve of the accuracy of
the mixup varies steeply at 20-80 steps, while the ERM is
relatively flat, indicating that mixup will perform better than
ERM, both in a single category and in multiple categories.
In addition, this is also the most effective range of the mixup’s
λ value. It is noteworthy that, in about 70 steps, the test-
x1x2 accuracy of both methods peaked. The difference is
that the prediction accuracy of the mixup (Figure 2.a red
dotted line) begins to decline, while the ERM stays the same.
The reason for this phenomenon is that when λ in [0.3,0.7],
the mixup learns two categories at the same time, and beyond
this range, the training mode is dominated by the category
with larger label information and becomes the ERM training
mode. It can be seen that both approaches will converge
to the consistent position, around 54%. The reason for this
is the accuracy of one category is 96%, while the other is
about 10% of the random forecasts, taking the average of
the two as the prediction accuracy of multiple categories.

FIGURE 2. Testing of different mixed-ratio samples of trained neural
networks using mixup and ERM training methods. The two y-axes
represent the accuracy and loss of the network, respectively. and the
x-axis represents the test step. The test-x1x2 and test-x2x1 means the
top-2 accuracy: when input is λx1 + (1− λ)x2 or λx2 + (1− λ)x1,
the corresponding top-2 categories is predicted as (y1, y2).
(a) Mixup. (b) ERM.

This phenomenon also illustrates the difference between the
mixup and ERM decision surfaces, see Section III-C for
visualizing both training methods.

By interpolating two samples to test the neural network,
the variation of the loss function of the neural network can
also be obtained. The maximum cross-entropy of mixup
in Figure 2 is about 4.3 and the ERM is about 21.5. This
shows that the loss function of mixup is smoother in multi-
category prediction, while the loss of ERM is larger. This
further shows that mixup has a smoother decision surface,
which makes it easier to predict the interpolation between
multiple categories.

C. VISUALIZATION OF LOSS FUNCTIONS
The visualization of the loss function of different training
methods helps to understand the decision-making behavior of
neural networks. In this section, we visualize the loss function
of the two training methods, mixup and ERM. Reference [33]
proposed to project the network parameters onto the vector
of random directions for visualization, but did not consider
the effect of vector size on the loss function. Too small a
random vector will get a huge loss value, making most of the
loss value is not within the normal range, resulting in limited
visualization capabilities. Furthermore, the parameters of BN
are not considered in [33], and BN has scaling invariance to
the network [35]. Reference [35] makes the network param-
eters and random vectors have the same Frobenius norm,
making it possible to perturb the parameters in the BN layer of

VOLUME 6, 2018 58777



D. Liang et al.: Understanding Mixup Training Methods

Algorithm 1 Visualizing Loss Function
Require: net,M ,V , L,mom, x (net is a trained network.

M and V are the mean and variance of the normal dis-
tribution, respectively. L is the approximate loss value.
The mom is the momentum that changes the value of the
variance. The x represents test samples.)

1: W̃i ← 0 // The W̃i are initialized to 0 tensors with the
same shape asW .

2: function GetLoss(V ,mom)
3: V ← (1+ mom)V
4: Ti ← normal(mean = M , variance = V , size = W )

//The tensor Ti is initialized from a normal distribution
with mean M , variance V , and size W . W is obtained
from the net parameters.

5: W̃i← Ti ·W
6: loss← net(W̃i, x)
7: return loss,V
8: end function
9: for i = 1→ 2 do
10: loss,V ← GetLoss(V , 0)
11: if loss < L then
12: while loss < L do
13: loss,V ← GetLoss(V ,mom)
14: end while
15: else
16: while loss > L do
17: loss,V ← GetLoss(V ,−mom)
18: end while
19: end if
20: end for
21: for α = −1→ 1 do
22: for β = −1→ 1 do
23: loss(α, β) = net(W + αW̃1 + βW̃2, x)
24: end for
25: end for
26: return loss(α, β)

the network. Unlike the above method, our method considers
perturbing the parameters of the network starting from an
appropriate random tensor and gradually adjusting its per-
turbation range. When the network’s loss value reaches a
predetermined size, save these random tensors. In the second
stage, we use the network parameters and these random ten-
sors for linear interpolation to get the different loss values
of the network. Algorithm 1 gives the detailed steps of the
process.

In order to better visualize the loss of the model trained
using the mixup method, it is necessary to properly set the
parameters in Algorithm 1. On the network architecture,
we use trained PreAct-Resnet [27] or VGG-11 [7] models
because they have different architectures. The mean M and
variance V of the normal distribution in Algorithm 1 are set to
0 and 0.2, respectively. The parameter mom can conveniently
control the magnitude and direction of the disturbance to the

network parameters, which can better control the projection
of the network parameters in the disturbance direction. In our
experiment, the mom is set to 0.1.

Different optimization methods find different local min-
ima [34]. We visualize the loss function of Resnet-like [6]
andVGGNet-like [7] networks on the CIFAR-10 [16] dataset.
It can be seen from Figure 3 that the loss functions of the
two training methods, mixup and ERM, are very similar.
However, the size of the basin near the local minimum of the
mixup is much larger than that of the ERM, indicating that the
loss surface near the local minima of the mixup is smoother
and the ERM is relatively sharp. The more flat the decision
surface, the more conducive to the network to predict the
interpolation between samples. This also allows the network
to have a better robustness against the attack by adversarial
sample.

In addition to using the weighted noise perturbation
method to visualize the loss function of mixup and ERM,
we also compared the visualization method proposed in this
paper with the method in [33]. Since the method proposed
by [33] can only visualize the one-dimensional loss function,
we extend [33] into a two-dimensional visualization method
and embed it into our visualization algorithm, using ran-
dom weight tensors instead of perturbing network weights.
Fig. 3.g and Fig. 3.h show the results of visualizing network
loss using the method in [33]. Comparing the two visualiza-
tion methods, we can find that our visualization method pro-
duces a smoother contour and the loss function is relatively
flat, indicating that the network weight is projected more
smoothly. However, the contours produced by [33] are more
rugged, which indicates that the random network weights
are significantly different from the original network weights,
and the projected loss values have a large disturbance. This
phenomenon also shows that our visualization method can
better project the loss function onto the disturbed weight
tensor instead of the random weight tensor, which is more
practical.

IV. SPATIAL MIXUP
A. STITCH THE IMAGE
Mixing spatial images is a very straightforward trick to use
the spatial information of the image to create a new syn-
thetic sample. Stitching the space domain of two images will
have a variety of stitching options. As shown in Figure 4,
we can stitch the image vertically, or stitch the image hori-
zontally, or randomly create rectangles as the stitch area, etc.
Assuming that the two images occupy the different propor-
tions of area in the synthetic image as λ and 1−λ respectively,
the proportion of their labels in the synthetic label will be set
as λy1 and (1− λ)y2.

We assume that the image’s tensor is [H,W,C], and each
dimension of the tensor represents the height, width and
number of channels of the image, respectively. Two randomly
selected samples from the training set are denoted by (xi, yi)
and (xj, yj). The random value λ (0 ≤ λ ≤ 1) is taken from the
Beta distribution. We use the following procedure to produce

58778 VOLUME 6, 2018



D. Liang et al.: Understanding Mixup Training Methods

FIGURE 3. Visualize networks using different training methods and different architectures. The title of each subfigure contains the training method,
network, maximum loss, and test accuracy. The subfigure (g) and (h) show the results of visualizing network loss using the method in [33]. (a) Mixup,
PreAct ResNet-18, L = 5, 95.8%. (b) ERM, PreAct ResNet-18, L = 5, 94.64%. (c) Mixup, PreAct ResNet-18, L = 10, 95.8%. (d) ERM, PreAct ResNet-18, L = 10,
94.64%. (e) Mixup, VGG-11, L = 5, 92.65%. (f) ERM, VGG-11, L = 5, 91.67%. (g) Mixup, PreAct ResNet-18, L = 5, 95.8%. (h) Mixup, VGG-11, L = 5, 92.65%.

FIGURE 4. The space domain of the two images is stitched in different ways to produce different synthetic images. (a) Vertical stitching.
(b) Horizontal stitching. (c) Random rectangle stitching.

a synthetic image:

P = bλ ·W c

x̃ = cat((x1[:, : P, :], x2[:,P :, :]), 1)

ỹ = λy1 + (1− λ)y2 (2)

where cat represents a function that combines two tensors
in one of its dimensions. The brackets in the Equation 2
represent numpy-style tensor indexes, which means that all
tensor values less than P (in x1) or greater than P (in x2) in
the second dimension will be selected.

Image stitching can provide a data augmentation because
stitching different images produces different samples.
In addition, it allows the filter to span two images while
extracting two incomplete sample information, which gives
neurons more chances to contribute to different samples
for better robustness. We will record the horizontally
stitched image as mixup-H and the vertically stitched image

as mixup-V. For the sake of comparison, we will record the
original mix of image channels as mixup-C. The new sam-
ples produced by several different mixup methods, so these
methods can exist as complementary.

B. MIX MULTIPLE MIXUPS
The difference between image stitching and image channel
interpolation is quite different. Instead of simply interpolat-
ing between samples, image stitching interpolates on spatial
information, which is not as intuitively understood as image
channel interpolation. There will be two different spatial
distributions of the synthetic samples, which allow the neu-
ral network to clearly capture the interpolation information
between the two category of spatial domain.

Mixing multiple mixup training methods will produce
more diverse training samples. Neural networks can not only
make use of synthetic samples on the channel, but also make

VOLUME 6, 2018 58779



D. Liang et al.: Understanding Mixup Training Methods

TABLE 1. Test error comparison of many mixup methods. The experimental results of mixup-C and ERM refer to [14].

use of synthetic samples in the spatial domain. This will
allow neural networks to have more opportunities to observe
more samples and increase their generalization performance.
In addition, in the training process, using different mixed
mode samples, the same label information can correspond
to different mixed mode samples, which will produce better
regularization effect. Conveniently, we distinguish the dif-
ferent mixing methods by adding the suffix. For example,
we will designate mixup-HV as a training method that uses
both horizontal and vertical stitching. The training method
that uses both horizontal stitching and channel mixing is
denoted as mixup-HC. The performance of different mixups
is compared in the experiment Section V-A.

V. EXPERIMENT
A. CLASSIFICATION PERFORMANCE
We use representative benchmark datasets: CIFAR-10 [16]
and CIFAR-100 [16] to evaluate the performance of our algo-
rithm. CIFAR-10 and CIFAR-100 each contain 32× 32-pixel
color images, consisting of 50k training images and 10k test-
ing images, respectively. In CIFAR-10, it includes 10 classes,
and CIFAR-100 includes 100 classes. Channel means are
computed and subtracted in preprocessing. We also apply
standard augmentation [6], [30], [37]–[43]: horizontal flip-
ping and translation by 4 pixels are adopted before using the
mixup method.

When training on the CIFAR [16] dataset, the networks
are trained on two Tesla k80 GPUs using stochastic gradi-
ent descent (SGD). We use a weight decay of 10−4 and a
Nesterov momentum [44] of 0.9 without dampening. The
batch size on each GPU is set to 128 for 200 epochs. The
initial learning rate is set to 0.1 and is divided by 10 at 50%
and 75% of the total number of training epochs. The value of
α is set to 1 on this dataset.
We also conducted more studies on the ILSVRC 2012 clas-

sification dataset [45]. It contains 1.2 million images for
training, 50k for verification, and a total of 1000 predefined
category labels. We use the same data augmentation scheme
as [14] for the training image and apply 224 × 224 center
cropping to the image during testing.

The ImageNet-based models are initialized similarly to the
CIFAR [16] models, but some settings are different. Training
is carried out with SGD over a total of 90 training epochs

with learning rate of 0.1, and learning rate decayed by factor
of 0.1 after 30, 60 and 80 epochs. We train the models
in multi-GPU mode with 8 Tesla k80 GPUs, splitting each
mini-batch into 8 portions. The training mini-batch size
is 256. These training settings are similar to those used to
train ImageNet-based ResNets [6]. In order to facilitate com-
parison, the value of α is consistent with [14].

1) PERFORMANCE ON CIFAR-10
We use three network architectures to compare the per-
formance of the two training methods, mixup and ERM.
We used PreAct-ResNet18 [27] to compare the performance
of several mixup methods on CIFAR [16]. It can be seen
that mixup-C (original mixup) and mixup-H have almost the
same performance, while mixup-HV and mixup-HC have
relatively higher performance gains. We also experimented
with DenseNet-BC-190 [46] because the network needed to
preserve all the features of the layer during training, so the
memory of a single 12G GPU did not support training for
that network. We chose memory-optimized DenseNets [47]
to train on two GPUs. The network architecture in the
CIFAR [16] test error is 2.3%, achieved the state of the art
result. ResNext29-8-64 [48] is a network of relatively few
layers, use it to test the mixup-HV method, find its gener-
alization error is better than mixup-C too.

2) PERFORMANCE ON IMAGENET
We performed a performance comparison of several mixup
methods on the ImageNet [17] dataset. As shown in Table 1,
the performance of mixup-HV and mixup-HC is higher than
that of other mixup training methods, and the performance
difference between mixup-H and mixup-C is not obvious.
We analyzed that the reason is that mixup-HV and mixup-HC
use more data augmentation than mixup-C and mixup-H,
because the regularization of the loss layer caused by the
mixed labels during their training is the same. This experi-
ment fully proves that the spatial mixup training method has
a relatively large performance advantage over the original
mixup and ERM training methods.

B. MIXGAN
Mixup [14] has demonstrated that introducing a mixup
approach into GANwill result in more stable training, as well

58780 VOLUME 6, 2018



D. Liang et al.: Understanding Mixup Training Methods

as allowing GAN to generate the diversity of images. But it
just tested the toy dataset, did not use datasets that fit the
natural distribution, and used the mixup method only for
the discriminators. We apply mixups to the more general
problem, and we use CycleGAN [22], which uses unsu-
pervised training to edit images for two different domains.
It generates an image of the A domain to B domain using
the generation network G_A while generating an image from
the B domain to the A domain using the generator G_B
as an inverse mapping of G_A. It uses a loss called cyclic
consistency to minimize the information loss of a sample
from the A domain to the B domain and then back to the
A domain.

Training CycleGAN [22] requires solving the nimimax
problem of generator G and discriminator D parameters.
Since generators G and discriminators D are often parame-
terized as deep convolutional neural networks, this minimax
problem is very difficult in practice. Therefore many pro-
posals have been proposed to better train CycleGAN [22].
However, using the Mixup method to train CycleGAN [22],
its loss function can be reconstructed into the following
formalization:

P = bλ ·W c

x̃ = cat((x1[:, : P, :], x2[:,P :, :]), 1)

min
G

max
D

E[L(D(λx̃ + (1− λ)G(x̃)), λ)] (3)

where cat and P are consistent with the representation in
Equation 2. The loss function represented by Equation 3 is
different from the loss function of traditional CycleGAN [22].
Using this loss function to train CycleGAN [22] can not
only provide more efficient loss function, but also better
regularize the generated network and discriminant network.
ThismethodmakeGAN [18] havemore opportunity to access
a wider variety of training samples, allowing GAN [18] to be
trained faster and with more diverse patterns to avoid mode
collapse.

We use themixup-HVmethod in the generator ofMixGAN
and the mixup-C in the discriminator of MixGAN with-
out changing the loss function of the generator, and only
changing the discriminator’s loss function into a mixup form.
We reduced the training process of the original 200 epochs
to 150 epochs, and use horizontally and vertically stitched
images with equal probability for more data combinations.
We call this method MixCycleGAN. The image generation
quality of MixCycleGAN are tested on a Google Maps [36]
dataset. This dataset contains 1096 training images scraped
from Google Maps [36] with image size 256×256, and these
data was split into train and test about the median latitude
of the sampling region. Figure 5 shows the input and output
images during training.

Figure 6 compares the quality of the images generated
by MixCycleGAN and CycleGAN [22], showing that Mix-
CycleGAN produces more variety and richness of image
detail. But MixCycleGAN also produced some examples of
failure. In the last row of Figure 6, for large green areas,

FIGURE 5. MixCycleGAN training process, the first row is vertically
stitched images, the second row is horizontally stitched images. Idt_A
represents an image from the A domain through the G_A to the B domain
and then back to the A domain by G_B. and Idt_B has the opposite
process.

FIGURE 6. The images generated by MixCycleGAN and CycleGAN. Each
row shows the results of bidirectional generation from maps to photos
and from photos to maps.

MixCycleGAN did not produce all of the plants, but created
the ocean. This is related to its training method. Generators
trained by the mixup-HV method will generate two very
dissimilar spatial domain information in a forward process,
so that the generator will fill some space domain information.
This is the main reason for its diversity, but it is also why it is
difficult to fit large areas of similarities. MixCycleGAN tends
to generate more detail, resulting in enhanced image contrast,
giving different details for the same area over a large area.
We can avoid this by using a small percentage of images that
are not stitched in each iteration.

VI. CONCLUSION
In this paper, we first analyze the effect of linear interpolation
of samples and their labels on the generalization performance
of neural networks, and find that mixup is better at sep-
arating multiple categories at the same time. We propose
a method to visualize the loss function of neural networks
by weighting noise perturbations. By visualizing the loss
function of the mixup training method, we find that the clas-
sification decision-making surface of the mixup is smoother
than the ERM, which is beneficial for the network to pre-
dict the interpolated samples and to make the network more

VOLUME 6, 2018 58781



D. Liang et al.: Understanding Mixup Training Methods

robust against attacks. Based on the conclusion that the input
information of the mixup has positive correlation with the
label information, we propose a training method based on the
spatial image stitching, which has the same performance as
the mixup method. Finally, our experiments prove that the
combination of multiple mixup training methods can further
improve the generalization performance of neural networks,
and the mixed method has achieved the state of the art result
on the CIFAR and ImageNet datasets. Applying mixup-HV
and mixup-C to GAN generators and discriminators, respec-
tively, will reduce the GAN training process and increase the
diversity of generated images.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[2] G. Hinton et al., ‘‘Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,’’ IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[3] D. Silver et al., ‘‘Mastering the game of go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, ‘‘Understanding
deep learning requires rethinking generalization,’’ in Proc. ICLR, 2016.

[5] L. J. Ba and B. Frey, ‘‘Adaptive dropout for training deep neural networks,’’
in Proc. Adv. Neural Inf. Process. Syst., C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Red Hook,
NY, USA: Curran Associates, 2013, pp. 3084–3092.

[6] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[7] K. Simonyan and A. Zisserman. (2014). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[9] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, ‘‘Regularization
of neural networks using dropconnect,’’ in Proc. 30th Int. Conf. Mach.
Learn. (ICML), vol. 28, S. Dasgupta and D. McAllester, Eds. Atlanta,
GA, USA: PMLR, no. 3. May 2013, pp. 1058–1066.

[10] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn., 2015.

[11] M. D. Zeiler and R. Fergus, ‘‘Stochastic pooling for regularization of deep
convolutional neural networks,’’ in Proc. ICLR, 2013.

[12] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, ‘‘DisturbLabel: Regular-
izing CNN on the loss layer,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR),, Jun. 2016, pp. 4753–4762.

[13] H. Inoue. (2018). ‘‘Data augmentation by pairing samples for images
classification.’’ [Online]. Available: https://arxiv.org/abs/1801.02929

[14] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, ‘‘Mixup: Beyond
empirical risk minimization,’’ in Proc. ICLR, 2018.

[15] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley,
1998.

[16] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, USA, 2009.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[18] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural
Inf. Process. Syst., Z. Ghahramani, M.Welling, C. Cortes, N. D. Lawrence,
and K. Q.Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2014,
pp. 2672–2680.

[19] A. Radford, L. Metz, and S. Chintala. (2015). ‘‘Unsupervised represen-
tation learning with deep convolutional generative adversarial networks.’’
[Online]. Available: https://arxiv.org/abs/1511.06434

[20] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, ‘‘Improved techniques for training GANs,’’ in Proc. Adv. Neural
Inf. Process. Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2016,
pp. 2234–2242.

[21] I. Goodfellow et al., ‘‘Generative adversarial networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, Eds. Red Hook, NY, USA: Curran
Associates, 2014, pp. 2672–2680.

[22] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. (2017). ‘‘Unpaired image-to-
image translation using cycle-consistent adversarial networks.’’ [Online].
Available: https://arxiv.org/abs/1703.10593

[23] M. Elad and M. Aharon, ‘‘Image denoising via sparse and redundant
representations over learned dictionaries,’’ IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[24] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, ‘‘Image inpainting,’’
in Proc. 27th Annu. Conf. Comput. Graph. Interact. Techn., New York,
NY, USA, 2000, pp. 417–424.

[25] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y.-Q. Xu, and H.-Y. Shum,
‘‘Natural image colorization,’’ inProc. 18th Eurographics Conf. Rendering
Techn., Aire-la-Ville, Switzerland, 2007, pp. 309–320.

[26] K. Nasrollahi and T. B. Moeslund, ‘‘Super-resolution: A comprehensive
survey,’’Mach. Vis. Appl., vol. 25, no. 6, pp. 1423–1468, 2014.

[27] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Identity mappings in deep residual
networks,’’ in Computer Vision—ECCV, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham, Switzerland: Springer, 2016, pp. 630–645.

[28] G. Kang, X. Dong, L. Zheng, and Y. Yang. (2017). ‘‘PatchShuffle regular-
ization.’’ [Online]. Available: https://arxiv.org/abs/1707.07103

[29] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. (2017). ‘‘Random erasing
data augmentation.’’ [Online]. Available: https://arxiv.org/abs/1708.04896

[30] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, ‘‘Deep
networks with stochastic depth,’’ in Computer Vision—ECCV, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer,
2016, pp. 646–661.

[31] S. Singh, D. Hoiem, and D. Forsyth, ‘‘Swapout: Learning an ensemble of
deep architectures,’’ in Proc. Adv. Neural Inf. Process. Syst., D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2016, pp. 28–36.

[32] X. Bouthillier, K. Konda, P. Vincent, and R. Memisevic. (2015).
‘‘Dropout as data augmentation.’’ [Online]. Available: https://arxiv.org/
abs/1506.08700

[33] I. Goodfellow, O. Vinyals, and A. M. Saxe, ‘‘Qualitatively characterizing
neural network optimization problems,’’ in Proc. ICLR, 2015.

[34] D. J. Im, M. Tao, and K. Branson. (2016). ‘‘An empirical analysis of
the optimization of deep network loss surfaces.’’ [Online]. Available:
https://arxiv.org/abs/1612.04010

[35] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. (2017).
‘‘Visualizing the loss landscape of neural nets.’’ [Online]. Available:
https://arxiv.org/abs/1712.09913

[36] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image trans-
lation with conditional adversarial networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976,
doi: 10.1109/CVPR.2017.632.

[37] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. (2014). ‘‘Deeply-
supervised nets.’’ [Online]. Available: https://arxiv.org/abs/1409.5185

[38] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ in Proc. ICLR, 2014.
[39] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,

‘‘Fitnets: Hints for thin deep nets,’’ in Proc. ICLR, 2015.
[40] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. (2014).

‘‘Striving for simplicity: The all convolutional net.’’ [Online]. Available:
https://arxiv.org/abs/1412.6806

[41] R. K. Srivastava, K. Greff, and J. Schmidhuber, ‘‘Training very
deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2015, pp. 2377–2385.

[42] D. Liang, F. Yang, T. Zhang, J. Tian, and P. Yang, ‘‘WPNets and
PWNets: From the perspective of channel fusion,’’ IEEE Access, vol. 6,
pp. 34226–34236, 2018.

[43] G. Larsson, M. Maire, and G. Shakhnarovich, ‘‘FractalNet: Ultra-deep
neural networks without residuals,’’ in Proc. ICLR, 2017.

[44] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ‘‘On the importance of
initialization and momentum in deep learning,’’ in Proc. Int. Conf. Mach.
Learn., 2013, pp. 1139–1147.

58782 VOLUME 6, 2018



D. Liang et al.: Understanding Mixup Training Methods

[45] O. Russakovsky et al., ‘‘ImageNet large scale visual recognition chal-
lenge,’’ Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[46] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2017, pp. 2261–2269.

[47] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten, and
K. Q. Weinberger. (2017). ‘‘Memory-efficient implementation of
densenets.’’ [Online]. Available: https://arxiv.org/abs/1707.06990

[48] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5987–5995.

DAOJUN LIANG received the B.S. degree in
computer science from TaiShan University, China,
in 2016. He is currently pursuing the master’s
degree with the School of Information Science
and Engineering, Shandong Normal University.
His research interests include deep learning and
computer vision.

FENG YANG received the B.S. and the M.S.
degrees in electronics and communications from
Shandong University in 1985 and 1988, respec-
tively. He is currently a Professor with the
School of Information Science and Engineering,
Shandong Normal University, where he is also
the Director of the Department of Communication
Engineering. He has participated in one national
fund project. He has published over 30 papers and
written 5 books. He holds seven national invention

patents and four utility model patents. He presided over five provincial
and university-level education reform projects. He was a recipient of the
Provincial-Level Teaching Achievement Award and the School-Level Teach-
ing Achievement Award. He was a recipient of three provincial awards for
scientific and technological progress.

TIAN ZHANG received the B.S. and M.S. degrees
and the Ph.D. degree from Shandong Normal Uni-
versity, Jinan, China, in 2006, 2009, and 2014,
respectively . He was also a Visiting Ph.D. stu-
dent with Tsinghua University from 2010 to 2013.
He has been with Shandong Normal University
since 2014, where he is currently an Associate
Professor. His research interests include wireless
communications and smart grid. He served as a
TPC Member of the IEEE GLOBECOM 2017.

He was a recipient of the 2010 Science and Technology Progress Award of
Shandong Province (2nd class), the 2015 Excellent Doctoral Dissertation
Award of Shandong University, and the 2016 Shandong Province Higher
Educational Science and Technology Award (3rd class).

PETER YANG received the B.S. degree from
Shandong University, Jinan, China, in 2013, and
the M.S. degree from the University of California
at Irvine, Irvine, USA, in 2015. He is cur-
rently a Software Engineer with Amazon, where
he is responsible for Amazon Web services.
His research interests include machine learning,
software engineering, and data analysis.

VOLUME 6, 2018 58783


	INTRODUCTION
	RELATED WORK
	METHOD
	GENERAL MIXUP
	MIXUP AND ERM'S MULTI-CATEGORY TEST
	VISUALIZATION OF LOSS FUNCTIONS

	SPATIAL MIXUP
	STITCH THE IMAGE
	MIX MULTIPLE MIXUPS

	EXPERIMENT
	CLASSIFICATION PERFORMANCE
	PERFORMANCE ON CIFAR-10
	PERFORMANCE ON IMAGENET

	MIXGAN

	CONCLUSION
	REFERENCES
	Biographies
	DAOJUN LIANG
	FENG YANG
	TIAN ZHANG
	PETER YANG


